AI Article Synopsis

Article Abstract

Background: Hydrogen sulfide (H S) is a potentially deadly gas that naturally occurs in petroleum and natural gas. The Occupational Health and Safety Administration cites H S as a leading cause of workplace gas inhalation deaths. Mass casualties of H S toxicity may be caused by exposure from industrial accidents or release from oil field sites. H S is also an attractive terrorism tool because of its high toxicity and ease with which it can be produced. Several potential antidotes have been proposed for hydrogen sulfide poisoning but none have been completely successful.

Objective: The objective was to compare treatment response assessed by the time to spontaneous ventilation among groups of swine with acute H S-induced apnea treated with intravenous (IV) cobinamide (4 mg/kg in 0.8 mL of 225 mmol/L solution), IV hydroxocobalamin (4 mg/kg in 5 mL of saline), or saline alone.

Methods: Twenty-four swine (45-55 kg) were anesthetized, intubated, and instrumented with continuous femoral and pulmonary artery pressure monitoring. After stabilization, anesthesia was adjusted such that animals would spontaneously ventilate with an FiO of 0.21. Sodium hydrosulfide (NaHS; concentration of 8 mg/mL) was begun at 1 mg/kg/min until apnea was confirmed for 20 seconds by capnography. This infusion rate was sustained for 1.5 minutes postapnea and then decreased to a maintenance rate for the remainder of the study to replicate sustained clinical exposure. Animals were randomly assigned to receive cobinamide (4 mg/kg), hydroxocobalamin (4 mg/kg), or saline and monitored for 60 minutes beginning 1 minute postapnea. G* power analysis using the Z-test determined that equal group sizes of eight animals were needed to achieve a power of 80% in detecting a 50% difference in return to spontaneous ventilations at α = 0.05.

Results: There were no significant differences in baseline variables. Moreover, there were no significant differences in the mg/kg dose of NaHS (5.6 mg/kg; p = 0.45) required to produce apnea. Whereas all of the cobinamide-treated animals survived (8/8), none of the control (0/8) or hydroxocobalamin (0/8)-treated animals survived. Mean (±SD) time to spontaneous ventilation in the cobinamide-treated animals was 3.2 (±1.1) minutes.

Conclusions: Cobinamide successfully rescued the severely NaHS-poisoned swine from apnea in the absence of assisted ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acem.13213DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
12
intravenous cobinamide
8
time spontaneous
8
spontaneous ventilation
8
cobinamide-treated animals
8
animals survived
8
animals
6
efficacy intravenous
4
cobinamide
4
cobinamide versus
4

Similar Publications

Intranasal Administrations of AP39-Loaded Liposomes Selectively Deliver H2S to Neuronal Mitochondria to Protect Neonatal Hypoxia-Ischemia by Targeting ERK1/2 and Caspase-1.

ACS Biomater Sci Eng

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.

Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.

View Article and Find Full Text PDF

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Ensuring companion animal welfare is a top priority for the pet industry and owners alike. The health of the pets can be directly and effectively improved through diet. Chenpi includes beneficial ingredients with proven anti-inflammatory, antioxidant, and immunomodulatory properties.

View Article and Find Full Text PDF

In Situ Slow-Release Hydrogen Sulfide Therapeutics for Advanced Disease Treatments.

Small

January 2025

Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.

Hydrogen sulfide (HS) gas therapygarners significant attention for its potential to improve outcomes in various disease treatments. The quantitative control of HS release is crucial for effective the rapeutic interventions; however, traditional researchon HS therapy frequently utilizes static release models and neglects the dynamic nature of blood flow. In this study, we propose a novel slow-release in-situ HS release model that leverages the dynamic hydrolysis of HS donorswithin the bloodstream.

View Article and Find Full Text PDF

The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of HS, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The HS induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!