For proton spot scanning, use of a real-time-image gating technique incorporating an implanted marker and dual fluoroscopy facilitates mitigation of the dose distribution deterioration caused by interplay effects. This study explored the advantages of using a real-time-image gating technique, with a focus on prostate cancer. Two patient-positioning methods using fiducial markers were compared: (i) patient positioning only before beam delivery, and (ii) patient positioning both before and during beam delivery using a real-time-gating technique. For each scenario, dose distributions were simulated using the CT images of nine prostate cancer patients. Treatment plans were generated using a single-field proton beam with 3-mm and 6-mm lateral margins. During beam delivery, the prostate was assumed to move by 5 mm in four directions that were perpendicular to the beam direction at one of three separate timings (i.e. after the completion of the first, second and third quartiles of the total delivery of spot irradiation). Using a 3-mm margin and second quartile motion timing, the averaged values for ΔD99, ΔD95, ΔD5 and D5-95 were 5.1%, 3.3%, 3.6% and 9.0%, respectively, for Scenario (i) and 2.1%, 1.5%, 0.5% and 4.1%, respectively, for Scenario (ii). The margin expansion from 3 mm to 6 mm reduced the size of ΔD99, ΔD95, ΔD5 and D5-95 only with Scenario (i). These results indicate that patient positioning during beam delivery is an effective way to obtain better target coverage and uniformity while reducing the target margin when the prostate moves during irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570041 | PMC |
http://dx.doi.org/10.1093/jrr/rrx020 | DOI Listing |
Cancers (Basel)
January 2025
Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Cox 308, Boston, MA 02114, USA.
The management of periocular skin malignancies presents a unique challenge. Proton beam therapy, due to its sharp dose fall-off, allows for the delivery of a tumoricidal dose to the tumor while sparing adjacent normal tissues. Thirteen patients with a median age of 76.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Ophthalmology, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany.
: Accurate target definition, treatment planning and delivery increases local tumor control for radiotherapy by minimizing collateral damage. To achieve this goal for uveal melanoma (UM), tantalum fiducial markers (TFMs) were previously introduced in proton and photon beam radiotherapy. However, TFMs cause pronounced scattering effects in imaging that make the delineation of small tumors difficult.
View Article and Find Full Text PDFGels
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiotherapy, Changzhou Cancer Hospital, Honghe Road, Xinbei Area, Changzhou, 213032, China.
Purpose: Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and monitors its dosimetric characteristics.
Methods: This study employed cone-beam computed tomography from 115 lung cancer patients to develop a U-Net + + deep learning model for generating synthetic CT (sCT).
Phys Med Biol
January 2025
Center for Molecular Imaging and Experimental Radiotherapy, Universite Catholique de Louvain, av Hippocrate 55 B1.54.07, Brussels, 1200, BELGIUM.
Objective: As proton arc therapy (PAT) approaches clinical implementation, optimizing treatment plans for this innovative delivery modality remains challenging, especially in addressing arc delivery time. Existing algorithms for minimizing delivery time are either optimal but computationally demanding or fast but at the expense of sacrificing many degrees of freedom. In this study, we introduce a flexible method for pre-selecting energy layers (EL) in PAT treatment planning before the actual robust spot weight optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!