Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays.

ACS Appl Mater Interfaces

Department of Nano, Medical, and Polymer Materials, Yeungnam University, Gyeongsan , North Gyeongsang 38541, Republic of Korea.

Published: June 2017

In this study, low-voltage, printed, ion gel-based electrochromic devices (ECDs) were successfully fabricated. While conventional dispensing printing provides irregularly printed electrochromic (EC) gels, we improved the adhesion between the printed gel and the substrate by applying an external voltage. This is called electrostatic-force-assisted dispensing printing. As a result, we obtained well-defined, printed, EC gels on substrates such as indium tin oxide-coated glass. We fabricated a gel-based ECD by simply sandwiching the printed EC gel between two transparent electrodes. The resulting ECD, which required a low coloration voltage (∼0.6 V), exhibited a high coloration efficiency (η) of 161 cm/C and a large transmittance contrast (∼82%) between the bleached and colored states at -0.7 V. In addition, electrostatic-force-assisted dispensing printing was utilized to fabricate directly patterned ECDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b00946DOI Listing

Publication Analysis

Top Keywords

dispensing printing
16
electrostatic-force-assisted dispensing
12
electrochromic gels
8
printed gel
8
printed
5
printing
4
printing electrochromic
4
gels low-voltage
4
low-voltage displays
4
displays study
4

Similar Publications

3D-bioprinting is a promising technique to mimic the complex anatomy of natural tissues, as it comprises a precise and gentle way of placing bioinks containing cells and hydrogel. Although hydrogels expose an ideal growth environment due to their extracellular matrix (ECM)-like properties, high water amount and tissue like microstructure, they lack mechanical strength and possess a diffusion limit of a couple of hundred micrometers. Integration of electrospun fibers could hereby benefit in multiple ways, for instance by controlling mechanical characteristics, cell orientation, direction of diffusion and anisotropic swelling behavior.

View Article and Find Full Text PDF

Sample loading in gel electrophoresis using adapted 3D printers.

Anal Biochem

February 2025

Laboratory for Optics and Applied Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, Victoria, 3800, Australia. Electronic address:

In gel electrophoresis, samples that are dispensed too high above or too low into the wells result in sub-optimal outcomes. Here, an adapted 3D printer liquid handler equipped with an optical sensor was found to attain vertical sample delivery positionings at a standard deviation over mean ratio of 0.008.

View Article and Find Full Text PDF

Automated extrusion-based dispensing: Personalized dosing and quality control of clopidogrel tablets for pediatric care.

Eur J Pharm Sci

January 2025

Pharmaceutical Sciences Laboratory, Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, Turku FI-20520, Finland; CurifyLabs Oy, Salmisaarenaukio 1, Helsinki FI-00180, Finland.

The exploration of three-dimensional (3D) printing inspired technologies in pharmaceutical compounding reveals a promising frontier in personalized medicine manufacture. This study focuses on the development of clopidogrel bisulphate tablets, with doses ranging from 2 mg to 20 mg per tablet, suitable for pediatric use. The study explored a semi-solid extrusion-based deposition technology already being used in compounding pharmacies across several European locations.

View Article and Find Full Text PDF

While pharmaceutical Cocrystals have long been acknowledged as a promising method of enhancing a drugs bioavailability, they have not yet experienced widespread industrial adoption on the same scale as other multi-component drugs, such as salts and amorphous solid dispersions. This is partly due to the lack of a being no definitive screening strategy to identify suitable coformers, with the most cocrystal screening strategies heavily relying on trial and error approaches, or through utilizing a multiple and often conflicting, computational screening techniques combined with high material consumption experimental techniques. From the perspective of industry, this can often lead to high material waste and increased costs, encouraging the prioritization of more traditional bioenhancement techniques.

View Article and Find Full Text PDF
Article Synopsis
  • - Hemorrhage is the main cause of preventable death in trauma situations, leading to military and civilian advancements in medical practices, particularly through the use of tourniquets to manage extremity bleeding and save lives.
  • - While tourniquets have significantly decreased deaths from bleeding in military settings, noncompressible hemorrhage still poses a major risk, especially before patients receive definitive medical care.
  • - The study explores using a small, disposable pressure monitor during resuscitative endovascular balloon occlusion of the aorta (REBOA) to enhance blood pressure monitoring, facilitate better resuscitation practices, and reduce the need for blood products in extreme environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!