To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700222 | DOI Listing |
Nanoscale
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.
: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.
From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!