Background: Pioglitazone is a safe and effective option to manage patients with type 2 diabetes and nonalcoholic steatohepatitis (NASH). However, there is marked variability in treatment response.
Aim: To evaluate the relationship between concentrations of pioglitazone and its active metabolites and treatment outcomes in patients with NASH.
Methods: Pioglitazone concentrations were measured in patients with NASH treated with pioglitazone 45 mg/day for 18 months; liver biopsy samples were obtained at baseline and after treatment. The primary outcome was a ≥2-point reduction in NAFLD activity score (NAS) with at least one-point improvement in more than one liver histology category and without worsening of fibrosis. A novel marker, the pioglitazone exposure index, was calculated to consider the concentrations of pioglitazone as well as the two active metabolites.
Results: The response to pioglitazone was concentration-dependent as evidenced by the significant relationship between both pioglitazone concentration and pioglitazone exposure index with changes in NAS (r=.48, P=.0002 and r=.51, P<.0001, respectively), steatosis (r=.41, P=.002 and r=.46, P=.0005), and inflammation (r=.44, P=.0009 and r=.40, P=.0003). The pioglitazone exposure index was also associated with a change in ballooning (P=.04). The pioglitazone exposure index was higher in patients with NASH resolution (2.85±1.38 vs 1.78±1.48, P=.018). A predictive model for the primary outcome was developed that incorporated baseline NAS and pioglitazone exposure index (AUC=0.77).
Conclusions: This study demonstrates the importance of pioglitazone exposure to variable response in patients with NASH, and indicates potential factors that may identify patients most likely to benefit from chronic pioglitazone treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485416 | PMC |
http://dx.doi.org/10.1111/apt.14111 | DOI Listing |
Pharmacoepidemiol Drug Saf
January 2025
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.
Introduction: Masking is a reporting bias where drug safety signals are muffled by elevated reporting of other medications in spontaneous reporting databases. While the impact of masking is often limited, its effect when using restricted designs, such as active comparators, can be consequential.
Methods: We used data from the US Food and Drugs Administration Adverse Event Reporting System (1999Q3-2013Q3) to study masking in a real-world example.
Sci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFBrain Res Bull
January 2025
First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China. Electronic address:
Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFFEBS Lett
January 2025
Institute of Pharmaceutical Science, King's College London, UK.
Physiol Rep
January 2025
Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China.
The oral administrated thiazolidinediones (TZDs) have been widely reported to alleviate experimental pulmonary hypertension (PH). However, previous studies mainly focused on their beneficial effects on the cardiopulmonary vascular system but failed to determine their potential roles on gut microenvironment. This study aims to investigate the effects of pioglitazone, an oral TZD drug, on gut microbiome in classic PH rat models induced by hypoxia (HPH) or SU5416/hypoxia (SuHx-PH) and evaluate the therapeutic potential of supplementation of selective probiotics for experimental PH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!