The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming-induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground-level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short- and long-term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming-driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high-latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming-induced extension of LOS has important implications for the C-sink potential of subarctic grasslands under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.13749DOI Listing

Publication Analysis

Top Keywords

subarctic grasslands
28
soil warming
16
warming
11
los
9
icelandic subarctic
8
grasslands
8
climate change
8
los extensions
8
genetic adaptations
8
subarctic
7

Similar Publications

Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e.

View Article and Find Full Text PDF

Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions.

View Article and Find Full Text PDF

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.

View Article and Find Full Text PDF

Background And Aims: The response of subarctic grassland's below-ground to soil warming is key to understanding this ecosystem's adaptation to future climate. Functionally different below-ground plant organs can respond differently to changes in soil temperature (Ts). We aimed to understand the below-ground adaptation mechanisms by analysing the dynamics and chemistry of fine roots and rhizomes in relation to plant community composition and soil chemistry, along with the duration and magnitude of soil warming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!