In the current model, the most anterior part of the forebrain (secondary prosencephalon) is subdivided into the telencephalon dorsally and the hypothalamus ventrally. Our recent study identified a new morphogenetic unit named the optic recess region (ORR) between the telencephalon and the hypothalamus. This modification of the forebrain regionalization based on the ventricular organization resolved some previously unexplained inconsistency about regional identification in different vertebrate groups. The ventricular-based comparison also revealed a large diversity within the subregions (notably in the hypothalamus and telencephalon) among different vertebrate groups. In tetrapods there is only one hypothalamic recess, while in teleosts there are two recesses. Most notably, the mammalian and teleost hypothalami are two extreme cases: the former has lost the cerebrospinal fluid-contacting (CSF-c) neurons, while the latter has increased them. Thus, one to one homology of hypothalamic subregions in mammals and teleosts requires careful verification. In the telencephalon, different developmental processes between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish) have already been described: the evagination and the eversion. Although pallial homology has been long discussed based on the assumption that the medial-lateral organization of the pallium in Actinopterygii is inverted from that in Sarcopterygii, recent developmental data contradict this assumption. Current models of the brain organization are largely based on a mammalian-centric point of view, but our comparative analyses shed new light on the brain organization of Osteichthyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520958 | PMC |
http://dx.doi.org/10.1111/dgd.12348 | DOI Listing |
Sci Rep
January 2025
Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand.
Fibromyalgia is a chronic pain condition contributing to significant disability worldwide. Neuroimaging studies identify abnormal effective connectivity between cortical areas responsible for descending pain modulation (pregenual anterior cingulate cortex, pgACC) and sensory components of pain experience (primary somatosensory cortex, S1). Neurofeedback, a brain-computer interface technique, can normalise dysfunctional brain activity, thereby improving pain and function.
View Article and Find Full Text PDFNat Commun
January 2025
Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).
View Article and Find Full Text PDFeNeuro
January 2025
Graduate School of Pharmaceutical Science, Tokushima Bunri University, Sanuki 769-2193, Japan
Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on interhemispheric connectivity via the corpus callosum (CC).
View Article and Find Full Text PDFSci Rep
December 2024
INSERM, INS, Inst Neurosci Syst, Aix Marseille Univ, Marseille, France.
Post-traumatic stress disorder (PTSD) is more common in patients with drug-resistant epilepsy. Some of these patients experience PTSD due to early psychotraumatic events. This study aims to assess the influence of PTSD on interictal functional connectivity using stereoelectroencephalography (SEEG) recordings in patients with temporal lobe DRE (TDRE).
View Article and Find Full Text PDFExp Brain Res
December 2024
Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, SD, USA.
Injury to one cerebral hemisphere can result in paresis of the contralesional hand and subsequent preference of the ipsilesional hand in daily activities. However, forced use therapy in humans can improve function of the contralesional paretic hand and increase its use in daily activities, although the ipsilesional hand may remain preferred for fine motor activities. Studies in monkeys have shown that minimal forced use of the contralesional hand, which was the preferred hand prior to brain injury, can produce remarkable recovery of function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!