Optimizing E. coli-Based Membrane Protein Production Using Lemo21(DE3) or pReX and GFP-Fusions.

Methods Mol Biol

Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Svante Arrhenius väg 16C, SE-106 91, Stockholm, Sweden.

Published: February 2018

Optimizing the conditions for the production of membrane proteins in E. coli is usually a laborious and time-consuming process. Combining the Lemo21(DE3) strain or the pReX T7-based expression vector with membrane proteins C-terminally fused to Green Fluorescent Protein (GFP) greatly facilitates the optimization of membrane protein production yields. Both Lemo21(DE3) and pReX allow precise regulation of expression intensities of genes encoding membrane proteins, which is critical to identify the optimal production condition for a membrane protein. The use of GFP-fusions allows direct monitoring and visualization of membrane proteins at any stage during the production optimization process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6887-9_7DOI Listing

Publication Analysis

Top Keywords

membrane proteins
16
membrane protein
12
protein production
8
lemo21de3 prex
8
membrane
7
production
5
optimizing coli-based
4
coli-based membrane
4
protein
4
production lemo21de3
4

Similar Publications

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.

View Article and Find Full Text PDF

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

The Evolving T Cell Receptor Recognition Code: The Rules Are More Like Guidelines.

Immunol Rev

January 2025

Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.

αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work.

View Article and Find Full Text PDF

Psoriasis (PsO) is a chronic immune-mediated disease of the skin. Psoriatic arthritis (PsA) is a prevalent chronic inflammatory disease that is associated with joint destruction and disability. The presence of PsO is the single greatest risk factor for the development of PsA.

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!