A one-dimensional random laser based on artificial high-index contrast scatterers.

Nanoscale

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

Published: June 2017

The realization of a one-dimensional (1D) random laser (RL) by using artificially fabricated scatterers is reported in this letter, and the lasing characteristic has also been investigated comprehensively. The manipulation of the lasing mode in the 1D microwire (MW) RL can be achieved through micro-pits prepared by the laser-ablation technique. Well-defined sharp lasing peaks were realized based on the coherence feedback process in the 1D optical waveguide. The near- and far-field images exhibit excellent spatial intensity distribution, and the stability of lasing modes has also been investigated. Our results represent a novel method towards the development of a manipulated-RL, which will highlight the application of disordered systems in optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr00261kDOI Listing

Publication Analysis

Top Keywords

one-dimensional random
8
random laser
8
laser based
4
based artificial
4
artificial high-index
4
high-index contrast
4
contrast scatterers
4
scatterers realization
4
realization one-dimensional
4
laser artificially
4

Similar Publications

Images are important information carriers in our lives, and images should be secure when transmitted and stored. Image encryption algorithms based on chaos theory emerge in endlessly. Based on previous various chaotic image fast encryption algorithms, this paper proposes a color image sector fast encryption algorithm based on one-dimensional composite sinusoidal chaotic mapping.

View Article and Find Full Text PDF

The application of machine learning approaches to classify and predict fertility rate in Ethiopia.

Sci Rep

January 2025

Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Integrating machine learning (ML) models into healthcare systems is a rapidly evolving field with the potential to revolutionize care delivery. This study aimed to classify fertility rates and identify significant predictors using ML models among reproductive women in Ethiopia. This study utilized eight ML models in 5864 reproductive-age women using Ethiopian Demographic Health Survey (EDHS), 2019 data.

View Article and Find Full Text PDF

Evaluating Material Design Principles for Calcium-Ion Mobility in Intercalation Cathodes.

Chem Mater

January 2025

Department of Materials Science and Engineering, University of California, Berkeley, California 94704, United States.

Multivalent-ion batteries offer an alternative to Li-based technologies, with the potential for greater sustainability, improved safety, and higher energy density, primarily due to their rechargeable system featuring a passivating metal anode. Although a system based on the Ca/Ca couple is particularly attractive given the low electrochemical plating potential of Ca, the remaining challenge for a viable rechargeable Ca battery is to identify Ca cathodes with fast ion transport. In this work, a high-throughput computational pipeline is adapted to (1) discover novel Ca cathodes in a largely unexplored space of "empty intercalation hosts" and (2) develop material design rules for Ca-ion mobility.

View Article and Find Full Text PDF

We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization.

View Article and Find Full Text PDF

Single-Atom Suture.

ACS Nano

January 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

In atomically thin two-dimensional (2D) materials, grain boundaries (GBs) are ubiquitous, displaying a profound effect on the electronic structure of the host lattice. The random configuration of atoms within GBs introduces an arbitrary and unpredictable local electronic environment, which may hazard electron transport. Herein, by utilizing the Pt single-atom chains with an ultimate one-dimensional (1D) feature (width of a single atom and length up to tens of nanometers), we realized the suture of the electron pathway at GBs of diversified transition metal dichalcogenides (TMDCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!