A copper-catalyzed oxidative decarboxylative coupling of α-keto acids with NH-sulfoximines has been developed. With CuBr as the catalyst and KSO as the oxidant, this reaction enables the formation of a C-N bond and gives N-aroylsulfoximine products in moderate to excellent yields. The reaction mechanism is likely to involve the generation of a reactive aroyl radical intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob00776k | DOI Listing |
Chem Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.
View Article and Find Full Text PDFJ Org Chem
January 2025
National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China.
This study introduces a novel methodology for the direct construction of tetrasubstituted centers, utilizing secondary C(sp)-H and C(sp)-H substrates, specifically indolin-2-ones and indoles, through an innovative oxidative cross-coupling reaction. Facilitated by a straightforward copper salt catalyst, this reaction proceeds efficiently at a mild temperature of 40 °C under operationally streamlined conditions. Emphasizing sustainability, this method is notably enhanced by employing air (molecular oxygen) as an eco-friendly oxidant.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
In this study, phosphoramide compounds were successfully synthesized a series of reaction transformations from P(O)H compounds. The process began with the formation of P-Se-Ar bonds, facilitated by the synergistic effect of phenylboronic acid, selenium, and appropriate ligands in the presence of copper. Following this, nucleophilic substitution reactions with amine compounds were conducted to create P-N bonds.
View Article and Find Full Text PDFJ Org Chem
January 2025
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China.
A copper-catalyzed regioselective annulation reaction, conducted without ligands or oxidants, has been developed for the preparation of multisubstituted furans from the readily available starting materials, β-keto esters and propargyl acetates. This process accommodates a wide range of functional groups, resulting in furan skeletons with diverse substitution patterns. The method's potential synthetic utility is highlighted by its applicability in gram-scale preparations and late-stage modifications of natural products.
View Article and Find Full Text PDFJ Org Chem
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
An effective and economical copper-catalyzed approach for the synthesis of phosphorylated 1-isochromenes is reported. This method is the first example of focus on ketone phosphonylation to establish a C-P bond and 6-- cyclization to construct a C-O bond between aryl- and alkyl-substituted alkynylketones and H-phosphinate esters, H-phosphites, and H-phosphine oxides, resulting in chemo- and regioselective phosphorylated 1-isochromenes with moderate to excellent yields under smooth reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!