Background: Humpback whales are known to undertake long-distance migration between feeding and breeding sites, but their movement behavior within their breeding range is still poorly known. Satellite telemetry was used to investigate movement of humpback whales during the breeding season and provide further understanding of the breeding ecology and sub-population connectivity within the southwest Indian Ocean (SWIO). Implantable Argos satellite tags were deployed on 15 whales (7 males and 6 females) during the peak of the breeding season in Reunion Island. A switching-state-space model was applied to the telemetry data, in order to discriminate between "transiting" and "localized" movements, the latter of which relates to meandering behavior within putative breeding habitats, and a kernel density analysis was used to assess the spatial scale of the main putative breeding sites.

Results: Whales were tracked for up to 71 days from 31/07/2013 to 16/10/2013. The mean transmission duration was 25.7 days and the mean distance travelled was 2125.8 km. The tracks showed consistent movement of whales from Reunion to Madagascar, demonstrating a high level of connectivity between the two sub-regions, and the use of yet unknown breeding sites such as underwater seamounts (La Perouse) and banks (Mascarene Plateau). A localized movement pattern occurred in distinct bouts along the tracks, suggesting that whales were involved in breeding activity for 4.3 consecutive days on average, after which they resume transiting for an average of 6.6 days. Males visited several breeding sites within the SWIO, suggesting for the first time a movement strategy at a basin scale to maximize mating. Unexpectedly, females with calf also showed extensive transiting movement, while they engaged in localized behavior mainly off Reunion and Sainte-Marie (East Madagascar).

Conclusions: The results indicated that whales from Reunion do not represent a discrete population. Discrete breeding sites were identified, thereby highlighting priority areas for conservation. The study is a first attempt to quantify movement of humpback whales within the southwestern Indian Ocean breeding range. We demonstrate a wandering behavior with stopovers at areas that likely represent key breeding habitat, a strategy which may enhance likelihood of individual reproductive success.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410694PMC
http://dx.doi.org/10.1186/s40462-017-0101-5DOI Listing

Publication Analysis

Top Keywords

humpback whales
16
breeding sites
16
breeding
14
breeding season
12
indian ocean
12
whales
9
movement behavior
8
whales breeding
8
southwest indian
8
breeding range
8

Similar Publications

Variation in reproductive success is a fundamental prerequisite for sexual selection to act upon a trait. Assessing such variation is crucial in understanding a species' mating system and offers insights into population growth. Parentage analyses in cetaceans are rare, and the underlying forces of sexual selection acting on their mating behaviours remain poorly understood.

View Article and Find Full Text PDF

Early development of vertebral column and appendicular skeleton in Naozhou Larimichthys crocea (Richardson, 1846).

J Fish Biol

January 2025

Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.

Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).

View Article and Find Full Text PDF

Surface Behaviours of Humpback Whale at Nosy Be (Madagascar).

Biology (Basel)

November 2024

Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.

The surface behaviours of humpback whales were studied in the presence of a whale-watching vessel at Nosy Be (Madagascar) during whale-watching activities, in order to characterise the ethogram of these animals. Data were collected from July to October 2018. Of the 75 total trips, humpback whales were observed 68 times and different types of aggregations were observed: Groups (33.

View Article and Find Full Text PDF

Persistent organic pollutants and fatty acids in humpback whales: Antarctic and Chilean feeding and Brazilian breeding sites.

Sci Total Environ

December 2024

Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil.

Article Synopsis
  • The study examined the fatty acid profiles and persistent organic pollutant (POP) levels in humpback whales from different regions of the Southern Ocean, Chile, and Brazil.
  • Significant differences were found in the fatty acid compositions, with whales in the Strait of Magellan showing a diet high in higher trophic level prey, while those from the Antarctic Peninsula and Brazil reflected a krill-based diet.
  • Elevated concentrations of pollutants, especially PCBs, were observed in whales from the Strait of Magellan, indicating a connection between their dietary habits and exposure to contaminants.
View Article and Find Full Text PDF

Baleen whale calves vocalize, but the behavioural context and role of their social calls in mother-calf interactions are yet to be documented further. We investigated the context of call production in humpback whale () calves using camera-equipped animal-borne multi-sensor tags. Behavioural states, including suckling sessions, were identified using accelerometer, depth and video data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!