This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic differentiation mechanisms. The pHBAd-MCMV- CXCL12-GFP vector (Ad-CXCL12) was constructed and quantitative polymerase chain reaction (qPCR)/western blotting used to determine CXCL12 expression in Ad-CXCL12-transfected MSCs. MSCs were treated with Ad-CXCL12 and AMD3100 (CXCL12 inhibitor) to detect BMP-2/Smad/Runx2/Osterix expression, bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) mRNA expression, and alkaline phosphatase (ALP) activity. PCR and sequencing confirmed successful construction of Ad-CXCL12. qPCR and enzyme-linked immunosorbent assay indicated that Ad-CXCL12 transfection promoted CXCL12 expression in MSCs. At 72 hours, Runx2 and Osterix, and Smad1/5/8 mRNA and protein expressions were significantly higher in the Ad-CXCL12 group than in the control group ( < 0.01). At 1 and 2 weeks, ALP activity and BSP mRNA expression were significantly higher in the Ad-CXCL12 group than in the control group ( < 0.01), respectively. No significant difference in and mRNA expression was determined between Ad-CXCL12 and control groups ( > 0.05). At 3 weeks, no significant difference in mineralized nodule staining was observed between groups ( > 0.05). Changes in the CXCL12/CXCR4 migration axis affected the BMP-2/Smad/Runx2/Osterix axis and , and mRNA expression in early-stage, but not mid-/latestage, MSCs osteogenic differentiation, therefore affecting the ability of MSCs to undergo osteogenic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411917PMC

Publication Analysis

Top Keywords

osteogenic differentiation
24
mrna expression
16
effects altered
8
altered cxcl12/cxcr4
8
cxcl12/cxcr4 axis
8
osteogenic
8
axis osteogenic
8
osteogenic gene
8
mscs
8
signal axis
8

Similar Publications

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!