Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86-100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enable N iterative rounds of genome editing in 3N+4 or 3N+2 days. A proof-of-concept, codon saturation mutagenesis at G149 of γ-glutamyl kinase relieves L-proline inhibition using Cpf1-assisted ssDNA recombineering. Thus, CRISPR-Cpf1-based genome editing provides a highly efficient tool for genetic engineering of Corynebacterium and other bacteria that cannot utilize the Sp CRISPR-Cas9 system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418603 | PMC |
http://dx.doi.org/10.1038/ncomms15179 | DOI Listing |
Xenotransplantation
January 2025
Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India. Electronic address:
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!