Mitochondria-targeted antioxidants are known to alleviate mitochondrial oxidative damage that is associated with a variety of diseases. Here, we showed that SkQ1, a decyltriphenyl phosphonium cation conjugated to a quinone moiety, exhibited strong antibacterial activity towards Gram-positive Bacillus subtilis, Mycobacterium sp. and Staphylococcus aureus and Gram-negative Photobacterium phosphoreum and Rhodobacter sphaeroides in submicromolar and micromolar concentrations. SkQ1 exhibited less antibiotic activity towards Escherichia coli due to the presence of the highly effective multidrug resistance pump AcrAB-TolC. E. coli mutants lacking AcrAB-TolC showed similar SkQ1 sensitivity, as B. subtilis. Lowering of the bacterial membrane potential by SkQ1 might be involved in the mechanism of its bactericidal action. No significant cytotoxic effect on mammalian cells was observed at bacteriotoxic concentrations of SkQ1. Therefore, SkQ1 may be effective in protection of the infected mammals by killing invading bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431119 | PMC |
http://dx.doi.org/10.1038/s41598-017-00802-8 | DOI Listing |
Cell Death Discov
December 2024
Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
Biochem Biophys Res Commun
January 2025
Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:
Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China. Electronic address:
Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant "MitoQ" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation.
View Article and Find Full Text PDFEur J Med Res
December 2024
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China.
Objective: Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!