Currently, reliable valving on integrated microfluidic devices fabricated from rigid materials is confined to expensive and complex methods. Freeze-thaw valves (FTVs) can provide a low cost, low complexity valving mechanism, but reliable implementation of them has been greatly hindered by the lack of ice nucleation sites within the valve body's small volume. Work to date has required very low temperatures (on the order of -40 °C or colder) to induce freezing without nucleation sites, making FTVs impractical due to instrument engineering challenges. Here, we report the use of ice-nucleating proteins (INPs) to induce ice formation at relatively warm temperatures in microfluidic devices. Microfluidic channels were filled with buffers containing femtomolar INP concentrations from Pseudomonas syringae. The channels were cooled externally with simple, small-footprint Peltier thermoelectric coolers (TECs), and the times required for channel freezing (valve closure) and thawing (valve opening) were measured. Under optimized conditions in plastic chips, INPs made sub-10 s actuations possible at TEC temperatures as warm as -13 °C. Additionally, INPs were found to have no discernible inhibitory effects in model enzyme-linked immunosorbent assays or polymerase chain reactions, indicating their compatibility with microfluidic systems that incorporate these widely used bioassays. FTVs with INPs provide a much needed reliable valving scheme for rigid plastic devices with low complexity, low cost, and no moving parts on the device or instrument. The reduction in freeze time, accessible actuation temperatures, chemical compatibility, and low complexity make the implementation of compact INP-based FTV arrays practical and attractive for the control of integrated biochemical assays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b00556DOI Listing

Publication Analysis

Top Keywords

microfluidic devices
12
low complexity
12
ice-nucleating proteins
8
freeze-thaw valves
8
reliable valving
8
low cost
8
nucleation sites
8
low
6
microfluidic
5
proteins improve
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

A Microfluidic-Based Cell-Stretching Culture Device That Allows for Easy Preparation of Slides for Observation with High-Magnification Objective Lenses.

Micromachines (Basel)

January 2025

Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan.

Microfluidic-based cell-stretching devices are vital for studying the molecular pathways involved in cellular responses to mechanobiological processes. Accurate evaluation of these responses requires detailed observation of cells cultured in this cell-stretching device. This study aimed to develop a method for preparing microscope slides to enable high-magnification imaging of cells in these devices.

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

A Robust Normally Closed Pneumatic Valve for Integrated Microfluidic Flow Control.

Micromachines (Basel)

December 2024

Zepto Life Technology Inc., 1000 Westgate Drive, St. Paul, MN 55114, USA.

Accurate fluid management in microfluidic-based point-of-care testing (POCT) devices is critical. Fluids must be gated and directed in precise sequences to facilitate desired biochemical reactions and signal detection. Pneumatic valves are widely utilized for fluid gating due to their flexibility and simplicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!