It is urgent to fabricate a class of green plastics to substitute synthetic plastics with increasing awareness of sustainable development of an ecological environment and economy. In this work, a novel green plastic constructed from cellulose and functionalized graphene has been explored. The mechanical properties and thermal stability of the resultant cellulose/functionalized graphene composite plastics (CGPs) equal or even exceed those of synthetic plastics. Moreover, the in-plane thermal conductivity of CGPs can reach 9.0 W·m·K with only 6 wt % functionalized graphene loading. These superior properties are attributed to the strong hydrogen-bonding interaction between cellulose and functionalized graphene, the uniform dispersion of functionalized graphene, and the alignment structure of CGPs. Given the promising synergistic performances and ecofriendly features of CGPs, we envisage that CGPs as novel green plastics could play important roles in thermal management devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b02675 | DOI Listing |
J Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.
View Article and Find Full Text PDFNanoscale
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
Homogeneous mixtures undergo phase separation to generate rich heterogeneous structures as well as enable complex physiological activity and delicate design of artificial materials. Beyond free space, the strong coupling between migrating components and spatial confinement plays a crucial role in determining the essential spatial compartment of phase separation, warranting further continuous exploration. Herein, we report the selective phase separation (SPS) behavior of polymers under a mobile two-dimensional (2D) confinement by graphene oxide (GO) sheets.
View Article and Find Full Text PDFAnalyst
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.
Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Ammonium perchlorate (AP) is widely utilized in aerospace, defense and other fields due to its high energy density, exceptional stability, easy availability and adaptability. However, the high sensitivity and hygroscopicity of AP severely constrain its application in numerous fields. In this study, a two-step continuous coating method was employed to construct AP-based energetic microcapsules with low sensitivity and hygroscopicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!