Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent azimuthal change in Pacific plate motion exposes high- and low-pressure melt products as geographically distinct volcanoes, explaining the simultaneous emergence of double-track volcanism across the Pacific; and finally, secondary pyroxenite, which is formed as eclogite melt reacts with peridotite, dominates the low-pressure melt region beneath Loa-track volcanism, yielding the systematic geochemical differences observed between Loa- and Kea-type lavas. Our results imply that the formation of double-track volcanism is transitory and can be used to identify and place temporal bounds on plate-motion changes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature22054DOI Listing

Publication Analysis

Top Keywords

pacific plate
16
double-track volcanism
12
low-pressure melt
12
double volcanic
8
tracks pacific
8
volcanic tracks
8
systematic geochemical
8
geochemical differences
8
azimuthal change
8
high- low-pressure
8

Similar Publications

Achilles tendinopathy (AT) is the most common running-related pathology among masters runners. Previous evidence suggests there are no differences in submaximal running biomechanics between masters runners with and without AT. Evidence suggests lower extremity power deficits are common among ageing individuals and those with AT.

View Article and Find Full Text PDF

The return of stagnant slab recorded by intraplate volcanism.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.

View Article and Find Full Text PDF

Background: The financial and resource burden of management of olecranon fractures in the elderly is likely to increase with an aging population. There is limited evidence guiding treatment choice in this cohort. This study aimed to determine whether operative treatment of displaced olecranon fractures in elderly patients provides superior 12-month functional outcomes compared to nonoperative treatment.

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of marine fungal cerebroside flavuside B (FlaB) on Staphylococcus aureus-infected keratinocytes in in vitro skin wounds and to identify FlaB targets in bacterial and human cells.

Methods And Results: A combination of enzyme-linked immunosorbent assay (ELISA), plate spectrofluorimetry, and flow cytometry with fluorescence dye staining, scratch assay, and real-time cell imaging techniques was used to investigate the effects of FlaB on S. aureus-infected HaCaT keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!