The electronic structures of the antifluorite-type compound Mg Si is described in which a sublattice of short cation-cation contacts creates a very low conduction band minimum. Since Mg Si shows n-type conductivity without intentional carrier doping, the present result indicates that the cage defined by the cations plays critical roles in carrier transport similar to those of inorganic electrides, such as 12 CaO⋅7 Al O :e and Ca N. A distinct difference in the location of conduction band minimum between Mg Si and the isostructural phase Na S is explained in terms of factors such as the differing interaction strengths of the Si/S 3s orbitals with the cation levels, with the more core-like character of the S 3s leading to a relatively low conduction band energy at the Γ point. Based on these results and previous research on electrides, approaches can be devised to control the energy levels of cation sublattices in semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201701681 | DOI Listing |
Nutrients
January 2025
Faculty of Health, Medicine & Behavioral Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
Bariatric surgery is increasingly offered to women of childbearing age and significantly reduces food intake and nutrient absorption. During pregnancy, associated risks, including micronutrient deficiency, are accentuated. This study describes maternal dietary intake and adherence to dietary recommendations in pregnant women with a history of bariatric surgery.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
This paper presents the outcomes of a feasibility study on the manufacturing of D-band horn antennas through the Low Power Bed Fusion process. Different prototypes have been realized and tested, showing nice results in terms of the co-polarization component. On the other hand, a spurious cross-polarization component is present in the radiation pattern even in the principal planes, limiting the device to single-polarization applications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland.
The production of consumer electronics using electrically conductive materials is a dynamically developing sector of the economy. E-textiles (electronic textiles) are also used in radio frequency identification technology, mainly in the production of tag antennas. For economic reasons, it is important that the finished product is universal, although frequencies in radio systems have different values in different regions of the world.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!