Offshore windfarms provide renewable energy, but activities during the construction phase can affect marine mammals. To understand how the construction of an offshore windfarm in the Maryland Wind Energy Area (WEA) off Maryland, USA, might impact harbour porpoises (Phocoena phocoena), it is essential to determine their poorly understood year-round distribution. Although habitat-based models can help predict the occurrence of species in areas with limited or no sampling, they require validation to determine the accuracy of the predictions. Incorporating more than 18 months of harbour porpoise detection data from passive acoustic monitoring, generalized auto-regressive moving average and generalized additive models were used to investigate harbour porpoise occurrence within and around the Maryland WEA in relation to temporal and environmental variables. Acoustic detection metrics were compared to habitat-based density estimates derived from aerial and boat-based sightings to validate the model predictions. Harbour porpoises occurred significantly more frequently during January to May, and foraged significantly more often in the evenings to early mornings at sites within and outside the Maryland WEA. Harbour porpoise occurrence peaked at sea surface temperatures of 5°C and chlorophyll a concentrations of 4.5 to 7.4 mg m-3. The acoustic detections were significantly correlated with the predicted densities, except at the most inshore site. This study provides insight into previously unknown fine-scale spatial and temporal patterns in distribution of harbour porpoises offshore of Maryland. The results can be used to help inform future monitoring and mitigate the impacts of windfarm construction and other human activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415022PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176653PLOS

Publication Analysis

Top Keywords

harbour porpoises
16
harbour porpoise
12
distribution harbour
8
maryland wind
8
wind energy
8
energy area
8
porpoise occurrence
8
maryland wea
8
harbour
7
maryland
6

Similar Publications

Fatty Acid Profiles Linked to Organohalogen Exposure in Cetaceans from the Northern South China Sea.

Environ Sci Technol

January 2025

School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.

Increasing evidence suggests that organohalogen contaminants (OHCs) could disrupt lipid metabolism in organisms, prompting consideration of fatty acids (FAs) as biological tools for assessing chemical stress in biological systems. This study examined 87 OHCs and 32 FAs in two sentinel cetacean species─Indo-Pacific humpback dolphins ( = 128) and Indo-Pacific finless porpoises ( = 26)─from the northern South China Sea (NSCS), a global hotspot for OHCs. Our results revealed higher OHC levels in these cetaceans than global averages.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

(1) Background: is a major parasite of large porpoises and whales and has been classified in the Habronematoidea family. However, there has been a great controversy regarding its classification. Mitochondria have an important function in revealing taxonomic and evolutionary history.

View Article and Find Full Text PDF

The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks.

J Acoust Soc Am

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!