In Vitro Glucuronidation and Sulfation of ε-Viniferin, a Resveratrol Dimer, in Humans and Rats.

Molecules

Unité de Recherche Œnologie, Molécules d'Intérêt Biologique, EA 4577, USC 1366 INRA, Bordeaux INP, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysottes, 33882 Villenave d'Ornon, France.

Published: May 2017

ε-Viniferin is a resveratrol dimer that possesses antioxidant or anti-inflammatory activities. However little is known about the metabolism of this oligostilbene. This study was thus undertaken as a first approach to identify and characterize the metabolites of ε-viniferin and to describe the kinetic profile of their appearance in humans and rats. The glucuronides and sulfates of ε-viniferin were first obtained by chemical hemi-synthesis and were fully characterized by UPLC-MS and NMR spectroscopy. Then, ε-viniferin was incubated with human or rat S9 liver fractions that led to the formation of four glucuronoconjugates and four sulfoconjugates. In both species, ε-viniferin was subjected to an intense metabolism as 70 to 80% of the molecule was converted to glucuronides and sulfates. In humans, the hepatic clearance of ε-viniferin (V/K) for glucuronidation and sulfation were 4.98 and 6.35 µL/min/mg protein, respectively, whereas, in rats, the hepatic clearance for glucuronidation was 20.08 vs. 2.59 µL/min/mg protein for sulfation. In humans, three major metabolites were observed: two glucuronides and one sulfate. By contrast, only one major glucuronide was observed in rats. This strong hepatic clearance of ε-viniferin in human and rat could explain its poor bioavailability and could help to characterize its active metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154661PMC
http://dx.doi.org/10.3390/molecules22050733DOI Listing

Publication Analysis

Top Keywords

hepatic clearance
12
glucuronidation sulfation
8
ε-viniferin
8
ε-viniferin resveratrol
8
resveratrol dimer
8
humans rats
8
glucuronides sulfates
8
human rat
8
clearance ε-viniferin
8
µl/min/mg protein
8

Similar Publications

This study investigates the relationship between vitamin D levels and liver cirrhosis severity, a leading cause of global morbidity and mortality. Chronic liver diseases, stemming from conditions such as hepatitis, alcohol use, non-alcoholic fatty liver disease, autoimmune diseases, and cryptogenic disorders, disrupt vitamin D metabolism, as the liver converts dietary and skin-derived vitamin D into 25-hydroxyvitamin D (25[OH]D), the primary circulating form. The cross-sectional study conducted at the Department of General Medicine of BLDE (DU) Shri.

View Article and Find Full Text PDF

A comprehensive characterization biotransformation of chlorinated paraffin by human and carp liver microsomes via liquid chromatography-high-resolution mass spectrometry and screening algorithm.

Environ Int

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

The chlorinated paraffin (CP) monomer 1,2,5,6,9,10-Hexachlorodecane (CP-4) was subjected to in vitro biotransformation using human and carp liver microsomes. Five types of CP-4 metabolites (OH-, keto-, enol-, aldehyde- and carboxy-CP-4) were identified in human liver microsomer while only mono-OH-CP-4 was found in the carp liver microsomes. Kinetic studies revealed that the formation of mono-, di-, tri-hydroxylated CP-4, keto-, enol-, and aldehyde-CP-4 in human liver microsomes was best described by substrate inhibition models, whereas the formation of carboxylated CP-4 metabolites best fit the Michaelis-Menten model.

View Article and Find Full Text PDF

Objective: The objective of this study was to determine the apparent intrinsic clearance (Cl) and fraction unbound in human liver microsomes (f) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CL).

Methods: Cl in human liver microsomes (HLM) was determined by substrate depletion, and f was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Cl) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS).

View Article and Find Full Text PDF

parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.

View Article and Find Full Text PDF

Background And Objectives: Epcoritamab is a CD3xCD20 bispecific antibody approved for the treatment of adults with different types of relapsed or refractory (R/R) B cell non-Hodgkin lymphoma (B-NHL) after ≥ 2 lines of systemic therapy. Here we report the first results from a population pharmacokinetic model-based analysis using data from 2 phase 1/2 clinical trials (EPCORE NHL-1, NCT03625037 and EPCORE NHL-3, NCT04542824) evaluating epcoritamab in patients with R/R B-NHL.

Methods: Plasma concentration-time data included 6819 quantifiable pharmacokinetic samples from 327 patients with R/R B-NHL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!