The ability to control the energy flow of light at the nanoscale is fundamental to modern communication and big-data technologies, as well as quantum information processing schemes. However, since photons are diffraction-limited, efforts of confining them to dimensions of integrated electronics have so far proven elusive. A promising way to facilitate nanoscale manipulation of light is through plasmon polaritons-coupled excitations of photons and charge carriers. These tightly confined hybrid waves can facilitate compression of optical functionalities to the nanoscale but suffer from huge propagation losses that limit their use to mostly subwavelength scale applications. With only weak evidence of macroscale plasmon polaritons, propagation has recently been reported theoretically and indirectly, no experiments so far have directly resolved long-range propagating optical plasmons in real space. Here, we launch and detect nanoscale optical signals, for record distances in a wireless link based on novel plasmonic nanotransceivers. We use a combination of scanning probe microscopies to provide high resolution real space images of the optical near fields and investigate their long-range propagation principles. We design our nanotransceivers based on a high-performance nanoantenna, Plantenna, hybridized with channel plasmon waveguides with a cross-section of 20 nm × 20 nm, and observe propagation for distances up to 1000 times greater than the plasmon wavelength. We experimentally show that our approach hugely outperforms both waveguide and wireless nanophotonic links. This successful alliance between Plantenna and plasmon waveguides paves the way for new generations of optical interconnects and expedites long-range interaction between quantum emitters and photomolecular devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b00266DOI Listing

Publication Analysis

Top Keywords

plasmon polaritons
8
real space
8
plasmon waveguides
8
plasmon
6
propagation
5
optical
5
wireless communication
4
communication nanoplasmonic
4
nanoplasmonic data
4
data carriers
4

Similar Publications

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Ultra-large nonlinear parameters and all-optical modulation of a transition metal dichalcogenides on silicon waveguide.

Sci Rep

January 2025

MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.

We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.

View Article and Find Full Text PDF

The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.

View Article and Find Full Text PDF

Detecting electromagnetic radiation scattered from a tip-sample junction has enabled overcoming the diffraction limit and started the flourishing field of polariton nanoimaging. However, most techniques only resolve amplitude and relative phase of the scattered radiation. Here, we utilize field-resolved detection of ultrashort scattered pulses to map the dynamics of surface polaritons in both space and time.

View Article and Find Full Text PDF

Optical sensors based on plasmonic nano-structures: A review.

Heliyon

December 2024

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!