A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers: Effects of composition on substrate hydrophobicity and cellular responses. | LitMetric

Thermoresponsive polymer (TRP) cell culture substrates are widely utilized for nonenzymatic, temperature-triggered release of adherent cells. Increasingly, multicomponent TRPs are being developed to facilitate refined control of cell adhesion and detachment, which requires an understanding of the relationships between composition-dependent substrate physicochemical properties and cellular responses. Here, we utilize a homologous series of poly(MEO MA -co-OEGMA ) brushes with variable copolymer ratio (x/y) to explore the effects of substrate hydrophobicity on L-929 fibroblast adhesion, morphology, and temperature-triggered cell detachment. Substrate hydrophobicity is reported in terms of the equilibrium spreading coefficient (S), and variations in copolymer ratio reveal differential hydrophobicity that is correlated to serum protein adsorption and initial cell attachment at 37°C. Furthermore, quantitative metrics of cell morphology show that cell spreading is enhanced on more hydrophobic surfaces with increased (x/y) ratio, which is further supported by gene expression analysis of biomarkers of cell spreading (e.g., RhoA, Dusp2). Temperature-dependent cell detachment is limited for pure poly(MEO MA); however, rapid cell rounding and detachment (<20 min) are evident for all poly(MEO MA -co-OEGMA ) substrates. These results suggest that increased MEO MA content in poly(MEO MA -co-OEGMA ) substrates elicits enhanced protein adsorption, cell adhesion, and cell spreading; however, integration of small amounts of the more hydrophilic OEGMA unit facilitates both cell attachment/spreading and detachment. This study demonstrates an important role for the composition-dependent control of surface hydrophobicity in the design of multicomponent TRPs for desired biological outcomes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2416-2428, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36100DOI Listing

Publication Analysis

Top Keywords

substrate hydrophobicity
12
cell
10
cell adhesion
8
cellular responses
8
copolymer ratio
8
cell detachment
8
cell spreading
8
tuning reversible
4
reversible cell
4
adhesion methacrylate-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!