Self-healing polymers can significantly extend the service life of materials and structures by autonomously repairing damage. Intrinsic healing holds great promise as a design strategy to mitigate the risks of damage by delaying or preventing catastrophic failure. However, experimentally resolving the microscopic mechanisms of intrinsic repair has proven highly challenging. This work demonstrates how optical micromechanical mapping enables the quantitative imaging of these molecular-scale dynamics with high spatiotemporal resolution. This approach allows disentangling delocalized viscoplastic relaxation and localized cohesion-restoring rebonding processes that occur simultaneously upon damage to a self-healing polymer. Moreover, frequency- and temperature-dependent imaging provides a way to pinpoint the repair modes in the relaxation spectrum of the quiescent material. These results give rise to a complete picture of autonomous repair that will guide the rational design of improved self-healing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201701017DOI Listing

Publication Analysis

Top Keywords

autonomous repair
8
self-healing polymer
8
imaging molecular
4
molecular motions
4
motions autonomous
4
repair
4
self-healing
4
repair self-healing
4
polymer self-healing
4
self-healing polymers
4

Similar Publications

Intermittent Fasting Enhances Motor Coordination Through Myelin Preservation in Aged Mice.

Aging Cell

January 2025

Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study.

View Article and Find Full Text PDF

The Role of SWI/SNF Complex in Bladder Cancer.

J Cell Mol Med

January 2025

Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.

View Article and Find Full Text PDF

This study presents a comprehensive method for detecting debonding defects in concrete-filled steel tube (CFST) structures using wave propagation analysis with externally attached piezoelectric ceramic sensors. Experimental tests and numerical simulations were conducted to evaluate the sensitivity and accuracy of two measurement techniques-the flat and oblique measurement methods-in detecting debonding defects of varying lengths and heights. The results demonstrate that the flat measurement method excels in detecting debonding height, while the oblique method is more effective for detecting debonding length.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Background: The metastasis-promoting G-protein-coupled receptor CXC Receptor 4 (CXCR4) is activated by the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1). The CXCL12/CXCR4 pathway in cancer promotes metastasis but the molecular details of how this pathway cross-talks with oncogenes are understudied. An oncogene pathway known to promote breast cancer metastasis in MDA-MB-231 xenografts is that of Mouse Double Minute 2 and 4 (MDM2 and MDM4, also known as MDMX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!