The identity of neuronal cell types is established and maintained by the expression of neuronal genes coding for ion channels, neurotransmitters, and neuropeptides, among others. Some of these genes have been shown to affect lifespan; however, their role in lifespan control remains largely unclear. The Drosophila melanogaster gene Lim3 encodes a transcription factor involved in complicated motor neuron specification networks. We previously identified Lim3 as a candidate gene affecting lifespan. To obtain direct evidence of the involvement of Lim3 in lifespan control, Lim3 overexpression and RNAi knockdown were induced in the nervous system and muscles of Drosophila using the GAL4-UAS binary system. We demonstrated that Lim3 knockdown in the nervous system increased survival at an early age and that Lim3 knockdown in muscles both increased survival at an early age and extended median lifespan, directly establishing the involvement of Lim3 in lifespan control. Lim3 overexpression in nerves and muscles was deleterious and led to lethality and decreased lifespan, respectively. Lim3 misexpression in both nerves and muscles increased locomotion regardless of changes in lifespan, which indicated that the effects of Lim3 on lifespan and locomotion can be uncoupled. Decreased synaptic activity was observed in the neuromuscular junctions of individuals with Lim3 overexpression in muscles, in association with decreased lifespan. However, no changes in NMJ activity were associated with the positive shift in locomotion observed in all misexpression genotypes. Our data suggested that modifications in the microtubule network may be induced by Lim3 misexpression in muscles and cause an increase in locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10522-017-9704-x | DOI Listing |
PLoS Biol
September 2024
Analytische Chemie, Universität Potsdam, Potsdam, Germany.
Integrins are fundamental for cell adhesion and the formation of focal adhesions (FA). Accordingly, these receptors guide embryonic development, tissue maintenance, and haemostasis but are also involved in cancer invasion and metastasis. A detailed understanding of the molecular interactions that drive integrin activation, FA assembly, and downstream signalling cascades is critical.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Osteoarthritis Cartilage
December 2022
Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA. Electronic address:
Objective: To describe the protocol of a multi-vendor, multi-site quantitative MRI study for knee post-traumatic osteoarthritis (PTOA), and to present preliminary results of cartilage degeneration using MR T and T imaging 10 years after anterior cruciate ligament reconstruction (ACLR).
Design: This study involves three sites and two MR platforms. The patients are from a nested cohort (termed as Onsite cohort) within the Multicenter Orthopaedic Outcomes Network (MOON) cohort 10 years after ACLR.
PLoS One
August 2022
Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States of America.
The Ajuba LIM protein Jub mediates regulation of Hippo signaling by cytoskeletal tension through interaction with the kinase Warts and participates in feedback regulation of junctional tension through regulation of the cytohesin Steppke. To investigate how Jub interacts with and regulates its distinct partners, we investigated the ability of Jub proteins missing different combinations of its three LIM domains to rescue jub phenotypes and to interact with α-catenin, Warts and Steppke. Multiple regions of Jub contribute to its ability to bind α-catenin and to localize to adherens junctions in Drosophila wing imaginal discs.
View Article and Find Full Text PDFToxicology
February 2022
Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, 2800 Kgs. Lyngby, Denmark. Electronic address:
Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!