Carbohydrates are important components in sweetpotatoes in terms of both their industrial use and eating quality. Although there has been a narrow range of diversity in the properties of sweetpotato starch, unique varieties and experimental lines with different starch traits have been produced recently both by conventional breeding and genetic engineering. The diversity in maltose content, free sugar composition and textural properties in sweetpotato cultivars is also important for their eating quality and processing of storage roots. In this review, we summarize the current status of research on and breeding for these important traits and discuss the future prospects for research in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407920PMC
http://dx.doi.org/10.1270/jsbbs.16135DOI Listing

Publication Analysis

Top Keywords

storage roots
8
eating quality
8
properties sweetpotato
8
carbohydrate components
4
components sweetpotato
4
sweetpotato storage
4
roots diversities
4
diversities genetic
4
genetic improvement
4
improvement carbohydrates
4

Similar Publications

Cuticular nitrogen economy during development in the cockroach Cryptocercus punctulatus and the termite Neotermes jouteli.

J Insect Physiol

December 2024

Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.

The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period.

View Article and Find Full Text PDF

Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China. Electronic address:

The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification.

View Article and Find Full Text PDF

Physiological characteristics and transcriptomic analyses of alfalfa root crown in wintering.

Front Plant Sci

December 2024

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

Background: Alfalfa, scientifically identified as , is repeatedly referred to as the "king of forages". Because of its tight relationship to winter hardiness, the alfalfa's root crown plays a significant role as a storage organ over the winter. At present, it is still unknown what molecular process makes the alfalfa root crown resistant to cold.

View Article and Find Full Text PDF

Optimizing post-harvest processing conditions for Angelica acutiloba roots in Hokkaido: storage temperature and duration.

J Nat Med

December 2024

DiviLaboratory of Pharmacognosy, School of Pharmacy, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, Japan.

The traditional post-harvest processing method of Angelica acutiloba roots, which involves hanging the roots outdoors after being harvested, is known to promote the conversion of starch in roots into sucrose, thereby increasing sweetness. At the same time, this method increases the dilute ethanol-soluble extract (DEE) content in A. acutiloba roots to meet the standard set by the Japanese Pharmacopoeia 18th edition.

View Article and Find Full Text PDF

Understanding and regulating global carbon relies crucially on comprehending the components and services of forest ecosystems. In particular, interactions that govern carbon storage in trees, soil, and microbes, driven by factors like vegetation structure, function, and soil characteristics, remain poorly understood, especially in the central Himalayas. To address this gap, we investigated carbon storage in tree aboveground biomass, root biomass, and soil across different vegetation types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!