Many herbal products have a long history of use, but there are increasing concerns over product efficacy, safety and quality in the wake of recent cases exposing discrepancies between labeling and constituents. When it comes to St. John's wort (Hypericum perforatum L.) herbal products, there is limited oversight, frequent off-label use and insufficient monitoring of adverse drug reactions. In this study, we use amplicon metabarcoding (AMB) to authenticate 78 H. perforatum herbal products and evaluate its ability to detect substitution compared to standard methods using thin-layer chromatography (TLC) and high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Hypericum perforatum was detected in 68% of the products using AMB. Furthermore, AMB detected incongruence between constituent species and those listed on the label in all products. Neither TLC nor HPLC-MS could be used to unambiguously identify H. perforatum. They are accurate methods for authenticating presence of the target compounds, but have limited efficiency in detecting infrageneric substitution and do not yield any information on other plant ingredients in the products. Random post-marketing AMB of herbal products by regulatory agencies could raise awareness among consumers of substitution and would provide an incentive to manufacturers to increase quality control from raw ingredients to commercialized products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431008PMC
http://dx.doi.org/10.1038/s41598-017-01389-wDOI Listing

Publication Analysis

Top Keywords

herbal products
20
hypericum perforatum
12
perforatum herbal
12
products
9
tlc hplc-ms
8
perforatum
5
herbal
5
comparative authentication
4
authentication hypericum
4
products dna
4

Similar Publications

Introduction: The integration of traditional plant-based methods for controlling ectoparasites in the primary healthcare of livestock is progressively emerging as a crucial intervention to enhance livestock productivity in regions with limited resources, particularly in smallholder farming areas facing resource constraints. In Sekhukhune District, where livestock plays a vital role in rural livelihoods, cattle ticks present a significant challenge to cattle farming. This study aimed to document the ethnoveterinary practices employed by local communities to control cattle ticks, highlighting the use of alternative methods rooted in indigenous knowledge (IK).

View Article and Find Full Text PDF

Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance.

View Article and Find Full Text PDF

Background: With the increasing global focus on health and the growing popularity of natural therapies, Traditional Chinese Medicine (TCM) products, including extracts, crude drugs, and herbal preparations, are widely utilized as both primary and complementary medicines worldwide. The Regional Comprehensive Economic Partnership (RCEP), spanning 15 countries across East Asia, Southeast Asia, and Oceania, offers a vast market for TCM. However, limited research has been conducted on the complex trade relations among RCEP members.

View Article and Find Full Text PDF

Background: Sheep coccidiosis could disturb the balance of intestinal microbiota, causing diarrhea, and even death in lambs. Chemical drugs are the primary method of treating sheep coccidiosis, but their use will bring drug resistance, toxic side effects, drug residues, and other problems. Chinese herbal medicines are investigated as alternative methods for controlling coccidian infections.

View Article and Find Full Text PDF

Aim: The goal of this research was to formulate mucoadhesive gels using hydroglyceric extracts of Cistus creticus L. and Inula viscosa (L.) Aiton, either separately or in combination, utilizes carboxymethyl cellulose and detects their physicochemical characteristics and safety for oromucosal cells and antimicrobial (antibacterial, antifungal, and antiviral) efficacy to assess their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!