Fluorination represents an important strategy in developing high-performance conjugated polymers for photovoltaic applications. Here, we use regioregular poly(3-ethylhexylthiophene) (P3EHT) and poly(3-ethylhexyl-4-fluorothiophene) (F-P3EHT) as simplified model materials, using single-molecule/aggregate spectroscopy and molecular dynamic simulations, to elucidate the impacts of backbone fluorination on morphology and excitonic coupling on the molecular scale. Despite its high regioregularity, regioregular P3EHT exhibits a rather broad distribution in polymer chain conformation due to the strong steric hindrance of bulky ethylhexyl side chains. This conformational variability results in disordered interchain morphology even between a few chains, prohibiting long-range effective interchain coupling. In stark contrast, the experimental and molecular dynamic calculations reveal that backbone fluorination of F-P3EHT leads to an extended rod-like single-chain conformation and hence highly ordered interchain packing in aggregates. Surprisingly, the ordered and close interchain packing in F-P3EHT does not lead to strong excitonic coupling between the chains but rather to dominant intrachain excitonic coupling that greatly reduces the molecular energetic heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441816 | PMC |
http://dx.doi.org/10.1073/pnas.1620722114 | DOI Listing |
Adv Mater
January 2025
Center for Hybrid Organic-Inorganic Semiconductors for Energy, Golden, Colorado, 80401, USA.
Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, University of Pretoria, 0002 Pretoria, South Africa.
Much can be learned about molecular aggregates by modeling their fluorescence-type spectra. In this study, we systematically describe the accuracy of various methods for simulating fluorescence-type linear spectra in a dimer system with a complex system-environment interaction, which serves as a model for various molecular aggregates, including most photosynthetic light-harvesting complexes (LHCs). We consider the approximate full cumulant expansion (FCE), complex time-dependent Redfield (ctR), time-independent Redfield, and modified Redfield methods and calculate their accuracy as a function of the site energy gap and coupling, excitonic energy gap, and dipole factor (i.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, WB, India.
In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
This study presents an efficient methodology for simulating nonadiabatic dynamics of complex materials with excitonic effects by integrating machine learning (ML) models with simplified Tamm-Dancoff approximation (sTDA) calculations. By leveraging ML models, we accurately predict ground-state wavefunctions using unconverged Kohn-Sham (KS) Hamiltonians. These ML-predicted KS Hamiltonians are then employed for sTDA-based excited-state calculations (sTDA/ML).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Organic room-temperature phosphorescence (RTP) emitters with long lifetimes, high exciton utilizations, and tunable emission properties show promising applications in organic light-emitting diodes (OLEDs) and biomedical fields. Their excited-state properties are highly related to single molecular structure, aggregation morphology, and external stimulus (such as hydrostatic pressure effect). To gain a deeper understanding and effectively regulate the key factors of luminescent efficiency and lifetime for RTP emitters, we employ the thermal vibration correlation function (TVCF) theory coupled with quantum mechanics/molecular mechanics (QM/MM) calculations to investigate the photophysical properties of three reported RTP crystals (Bp-OEt, Xan-OEt, and Xan-OMe) with elastic/plastic deformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!