The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414005PMC
http://dx.doi.org/10.1128/mBio.00452-17DOI Listing

Publication Analysis

Top Keywords

zika chikungunya
12
chikungunya dengue
12
dengue viruses
12
type interferon
12
adaptive immunity
12
cellular state
8
replication zika
8
evolved vertebrates
8
establishment adaptive
8
viral pathogens
8

Similar Publications

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Purpose Of Review: Arboviral infections caused by Dengue, Zika, and Chikungunya viruses continue to pose a significant global health threat, particularly in endemic regions. This review is timely because of the increasing prevalence of these infections, driven by factors such as urbanization and climate change. Dermatological manifestations of these viruses are crucial for early diagnosis, especially given the overlap in symptoms, which can complicate differential diagnosis.

View Article and Find Full Text PDF

Mosquitoes, particularly , pose significant public health risks by transmitting diseases like dengue, zika and chikungunya. var. (BTI) is a crucial larvicide targeting mosquitoes while sparing other organisms and the environment.

View Article and Find Full Text PDF

Arthropod-borne viral diseases are acute febrile illnesses, sometimes with chronic effects, that can be debilitating and even fatal worldwide, affecting particularly vulnerable populations. Indigenous communities face not only the burden of these acute febrile illnesses, but also the cardiovascular complications that are worsened by urbanization. A cross-sectional study was conducted in an Indigenous population in the Northeast Region of Brazil to explore the association between arboviral infections (dengue, chikungunya, and Zika) and cardiac biomarkers, including cardiotrophin 1, growth differentiation factor 15, lactate dehydrogenase B, fatty-acid-binding protein 3, myoglobin, N-terminal pro-B-type natriuretic peptide, cardiac troponin I, big endothelin 1, and creatine kinase-MB, along with clinical and anthropometric factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!