Biomechanical models of the oropharynx facilitate the study of speech function by providing information that cannot be directly derived from imaging data, such as internal muscle forces and muscle activation patterns. Such models, when constructed and simulated based on anatomy and motion captured from individual speakers, enable the exploration of inter-subject variability of speech biomechanics. These models also allow one to answer questions, such as whether speakers produce similar sounds using essentially the same motor patterns with subtle differences, or vastly different motor equivalent patterns. Following this direction, this study uses speaker-specific modeling tools to investigate the muscle activation variability in two simple speech tasks that move the tongue forward (/ə-ɡis/) vs backward (/ə-suk/). Three dimensional tagged magnetic resonance imaging data were used to inversely drive the biomechanical models in four English speakers. Results show that the genioglossus is the workhorse muscle of the tongue, with activity levels of 10% in different subdivisions at different times. Jaw and hyoid positioners (inferior pterygoid and digastric) also show high activation during specific phonemes. Other muscles may be more involved in fine tuning the shapes. For example, slightly more activation of the anterior portion of the transverse is found during apical than laminal /s/, which would protrude the tongue tip to a greater extent for the apical /s/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909993 | PMC |
http://dx.doi.org/10.1121/1.4978420 | DOI Listing |
BMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.
View Article and Find Full Text PDFGut Microbes
December 2025
Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.
View Article and Find Full Text PDFNat Cell Biol
January 2025
State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.
Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!