Viscous effects on the attenuation of a plane wave by an acoustic lining in shear flow.

J Acoust Soc Am

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom.

Published: April 2017

The attenuation of a plane acoustic wave incident on a flat impedance surface in a sheared and viscous fluid is investigated numerically and asymptotically. Predictions of various boundary models of impedance surfaces in shear flow are tested by comparing their predicted reflection coefficient. It is found that viscosity has a significant effect, reducing the reflection of upstream propagating sound while increasing the reflection of cross-stream propagating sound. The classical Ingard-Myers boundary condition is shown to incorrectly predict the damping rate of sound in many cases, and in some cases viscous effects are shown to be comparable to shear effects.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4979469DOI Listing

Publication Analysis

Top Keywords

viscous effects
8
attenuation plane
8
shear flow
8
propagating sound
8
effects attenuation
4
plane wave
4
wave acoustic
4
acoustic lining
4
lining shear
4
flow attenuation
4

Similar Publications

Triticale grains and brewers' spent grain (BSG) can be new sources to develop food products. From a socio-economical point of view, this fact is important since triticale is easily adapted to the climatic changes and BSG is a low-cost material which may lead to a "zero-waste" desiderate. In this study, dough rheological properties obtained from different triticale cultivars (Ingen 33, Ingen 35, Ingen 54, and Ingen 93) cultivated in the Republic of Moldova and BSG in a fermented form (BSF) in an addition level of 10% and 17.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Taylor's swimming sheet near a soft boundary.

Soft Matter

January 2025

Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.

In 1951, G. I. Taylor modeled swimming microorganisms by hypothesizing an infinite sheet in 2D moving in a viscous medium due to a wave passing through it.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Fluid displacement within layered porous media is more complex than in nonlayered ones. Most of the previous studies placed a focus on the porous media with layerings perpendicular to the flow direction, and the effects of pore topology were often ignored. Therefore, this study aims to reveal the flow physics in porous media with layering parallel to the flow direction by accounting for the specific pore topology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!