Predators that forage at boundaries between ecosystems can affect prey from adjacent ecosystems, thereby triggering consumptive and non-consumptive cascading effects, which may affect diversity and food web structure across ecosystems. In the present study, we manipulated the access of insectivorous birds, lizards, and anurans to tank bromeliads in scrub vegetation in southern Brazil. We measured cascading effects on the community structure of aquatic invertebrates inhabiting bromeliad leaves and on the ecosystem processes of decomposition rate and bromeliad growth. The exclusion of terrestrial vertebrate predators increased the biomass of Odonate and Tabanid apex predators, which shifted the body size structure of the assemblage and generated inverted biomass pyramids that were top-heavy. Within bromeliads with larger aquatic predators, the species composition and abundance of other aquatic invertebrates also changed, resulting in higher abundance of mesopredators and scrapers, and lower abundance of shredders. Under those conditions, the detritus decomposition rate decreased, and bromeliads produced more leaves, perhaps because of the higher deposition of nitrogenous waste by mesopredators. Our results highlight that the effects of terrestrial vertebrate predators can propagate across aquatic ecosystems, altering species composition, body size structure, food web organization, and ecosystem function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.1881 | DOI Listing |
J Comp Physiol B
January 2025
Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.
View Article and Find Full Text PDFElife
January 2025
Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.
Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric 'vocabulary', made by individually variable and sex-specific electric signals.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Therapeutics, Florida Chemical Senses Institute, Center for Addiction Research and Education; University of Florida College of Medicine, Gainesville, FL, USA.
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The systems which influence the display of sniffing are unclear.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
Military operations have long been recognized to cause significant environmental consequences. However, research on the environmental impacts of military operations remains fragmented despite the rise of modern technologies, including remote sensing (RS) and geographic information system (GIS). Hence, this study sought to review the literature on using RS and GIS approaches to assess military operations' environmental impacts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ecology, Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary.
The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!