Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MALDI-MSI) allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids. Both gangliosides were absent in both intracranial transplants. The ganglioside GM3 was not present in the healthy adult brain but was highly expressed in rat glioma allografts. In combination with tandem mass spectrometry GM3 (d18:1/C24:0) was identified as the most abundant ganglioside species in the glioma allotransplant. By contrast, mouse xenografts of human medulloblastoma were characterized by prominent expression of the ganglioside GM2 (d18:0/C18:0). Together, these data demonstrate that tissue-based MALDI-MSI of gangliosides is able to discriminate between different brain tumors and may be a useful clinical tool for their classification and grading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413052PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176254PLOS

Publication Analysis

Top Keywords

mass spectrometry
12
imaging mass
8
ganglioside species
8
intracranial transplants
8
rat glioma
8
xenografts human
8
human medulloblastoma
8
healthy adult
8
spectrometry identifies
4
identifies prognostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!