Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frame-registration-based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2017.2.FOCUS16539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!