Asthma is a chronic inflammatory lung disease that leads to 250 000 deaths annually. There is a need to better understand asthma by identifying new pathogenic molecules. We conducted a liquid-chromatography time-of-flight mass spectrometry (LC-Q-TOF-MS)-based metabolomics study to test for asthma and investigate the interventional mechanisms of surfactant protein A (SPA) in OVA-induced asthma mice. The results revealed that asthma disturbed 32 metabolites in 9 metabolic pathways. After SPA treatment, the metabolomics profile found in asthma was significantly reversed, shifting much closer to that of the control group, indicating that SPA has therapeutic effects against asthma. Metabolomic pathway analysis by the ingenuity pathway analysis demonstrated that several pathways including fatty acid metabolism, lipid metabolism, and purine metabolism were significantly altered in asthma. This study offers new methodologies for the understanding of asthma and the mechanisms of SPA in treating asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7mb00025a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!