An independent component analysis-based simultaneous phase-shifting dual-wavelength interferometry approach is proposed. By using a one-time phase-shifting procedure, the simultaneous phase-shifting operation of two illumination wavelengths can be implemented, and then the background intensity and two orthogonal independent components of each single wavelength can be separated from a sequence of simultaneous phase-shifting dual-wavelength interferograms with random phase shifts. Subsequently, the wrapped phases of single wavelength can be calculated by above two orthogonal independent components; thus the unambiguous phase of synthetic wavelength can be achieved. Both the simulation and experimental results show that the proposed approach reveals the advantages of high accuracy, rapid speed, high stability, and good adaptability for arbitrary phase shifts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.003673 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!