The unique behavior of engineered nanomaterials (ENM) in aqueous media and dynamic changes in particle settling, agglomeration and dissolution rates is a challenge to the consistency, reliability and interpretation of standard aquatic hazard bioassay results. While the toxicological endpoints (e.g., survival, growth, reproduction, etc.) in ecotoxicity bioassays are largely applicable to ENMs, the standard methods as written for dissolved substances are confounded by the dynamic settling, agglomeration and dissolution of particulate ENMs during the bioassay. A testing framework was designed to serve as a starting point to identify approaches for the consistent conduct of aquatic hazard tests that account for the behavior of ENMs in test media and suitable data collection to support representative exposure metrology. The framework was demonstrated by conducting three case studies testing ENMs with functionally distinct characteristics and behaviors. Pretests with a temporal sampling of particle concentration, agglomeration and dissolution were conducted on each ENM in test media. Results indicated that a silver nanoparticle (AgNP) powder was not dispersible, a nano-TiO powder was dispersible but unstable, and a polyvinylpyrrolidinone-coated AgNP was relatively stable in test media. Based on these functional results, Ceriodaphnia dubia bioassays were conducted to compare different exposure summary methods (nominal, arithmetic average, geometric average, time-weighted average) for calculating and expressing toxicity endpoints. Results indicated that while arithmetic means were effective for expressing the toxicity of more stable materials, time-weighted averaged concentrations were appropriate for the unstable nano-TiO.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435390.2017.1317863DOI Listing

Publication Analysis

Top Keywords

agglomeration dissolution
12
test media
12
testing framework
8
case studies
8
settling agglomeration
8
aquatic hazard
8
powder dispersible
8
expressing toxicity
8
assessing nanomaterial
4
nanomaterial exposures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!