Human cooperation has been explained through rationality as well as heuristics-based models. Both model classes share the feature that knowledge of payoff functions is weakly beneficial for the emergence of cooperation. Here, we present experimental evidence to the contrary. We let human subjects interact in a competitive environment and find that, in the long run, access to information about own payoffs leads to less cooperative behaviour. In the short run subjects use naive learning heuristics that get replaced by better adapted heuristics in the long run. With more payoff information subjects are less likely to switch to pro-cooperative heuristics. The results call for the development of two-tier models for the evolution of cooperation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418570 | PMC |
http://dx.doi.org/10.1038/ncomms15147 | DOI Listing |
J Math Biol
January 2025
Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.
Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.
View Article and Find Full Text PDFPediatr Pulmonol
January 2025
Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Background: People with cystic fibrosis (CF) may not expectorate sputum at young ages or after they receive CFTR modulators. While oropharyngeal swabs are commonly used to test for lower airway pathogens, it is unknown whether Staphylococcus aureus from the oropharynx matches the strain(s) infecting the lungs. Our goal was to determine whether oropharyngeal and sputum isolates of S.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.
The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.
View Article and Find Full Text PDFAdv Mater
January 2025
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
As promising bifunctional electrocatalysts, transition metal nitrides are expected to achieve an efficient hydrazine oxidation reaction (HzOR) by fine-tuning electronic structure via strain engineering, thereby facilitating hydrogen production. However, understanding the correlation between strain-induced atomic microenvironments and reactivity remains challenging. Herein, a generalized compressive strained W-NiN catalyst is developed to create a surface with enriched electronic states that optimize intermediate binding and activate both water and NH.
View Article and Find Full Text PDFArq Gastroenterol
January 2025
Editorial Department, The Japanese Society of Internal Medicine, Tokyo, Japan.
Background: This study aims to analyze the co-authorship network in Gastroenterology research, focusing on publications from 2000 to 2023, to understand the collaborative relationships among researchers and identify key contributors in the field.
Methods: Using data from the Web of Science (WoS), I examined 18,855 Gastroenterology-related articles published between 2000 and 2023. The analysis was conducted using Python within the PyCharm environment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!