Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.

Biofabrication

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China. 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing, 100084, People's Republic of China.

Published: May 2017

Integrative osteochondral repair is a useful strategy for cartilage-defect repair. To mimic the microenvironment, it is necessary that scaffolds effectively mimic the extracellular matrix of natural cartilage and subchondral bone. In this study, biomimetic osteochondral scaffolds containing an oriented cartilage layer, a compact layer, and a three-dimensional (3D)-printed core-sheath structured-bone layer were developed. The oriented cartilage layer was designed to mimic the structural and material characteristics of native cartilage tissue and was fabricated with cartilage matrix-chitosan materials, using thermal-induced phase-separation technology. The 3D-printed core-sheath structured-bone layer was fabricated with poly(L-lactide-co-glycolide)/β-tricalcium phosphate-collagen materials by low-temperature deposition technology, using a specially designed core-sheath nozzle, and was designed to mimic the mechanical characteristics of subchondral bone and improve scaffold hydrophilicity. The compact layer was designed to mimic the calcified-layer structure of natural cartilage to ensure the presence of different suitable microenvironments for the regeneration of bone and cartilage. A dissolving-bonding process was developed to effectively combine the three parts together, after which the bone and cartilage scaffolds exhibited good mechanical properties and hydrophilicity. Additionally, goat autologous bone mesenchymal stem cells (BMSCs) were isolated and then seeded into the bone and cartilage layers, respectively, and following a 1 week culture in vitro, the BMSC-scaffold constructs were implanted into a goat articular-defect model. Our results indicated that the scaffolds exhibited good biocompatibility, and 24 weeks after implantation, the femoral condyle surface was relatively flat and consisted of a large quantity of hyaloid cartilage. Furthermore, histological staining revealed regenerated trabecular bone formed in the subchondral bone-defect area. These results provided a new method to fabricate biomimetic osteochondral scaffolds and demonstrated their effectiveness for future clinical applications in cartilage-defect repair.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/aa7078DOI Listing

Publication Analysis

Top Keywords

osteochondral scaffolds
12
designed mimic
12
bone cartilage
12
cartilage
10
low-temperature deposition
8
thermal-induced phase-separation
8
cartilage-defect repair
8
natural cartilage
8
subchondral bone
8
biomimetic osteochondral
8

Similar Publications

Prevalence of osteoarthritis has been increasing in aging populations, which has necessitated the use of advanced biomedical treatments. These involve grafts or delivering drug molecules entrapped in scaffolds. However, such treatments often show suboptimal therapeutic effects due to poor half-life and off-target effects of drug molecules.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect.

J Mater Sci Mater Med

December 2024

Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, 130021, China.

In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!