Design and Validation of a Biosensor Implantation Capsule Robot.

J Biomech Eng

Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 e-mail:

Published: August 2017

We have proposed a long-term, noninvasive, nonrestrictive method of delivering and implanting a biosensor within the body via a swallowable implantation capsule robot (ICR). The design and preliminary validation of the ICR's primary subsystem-the sensor deployment system-is discussed and evidence is provided for major design choices. The purpose of the sensor deployment system is to adhere a small biosensor to the mucosa of the intestine long-term, and the modality was inspired by tapeworms and other organisms that employ a strategy of mechanical adhesion to soft tissue via the combined use of hooks or needles and suckers. Testing was performed to refine the design of the suction and needle attachment as well as the sensor ejection features of the ICR. An experiment was conducted in which needle sharpness, needle length, and vacuum volume were varied, and no statistically significant difference was observed. Finally, preliminary testing, coupled with prior work within a live porcine model, provided evidence that this is a promising approach for implanting a biosensor within the small intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4036607DOI Listing

Publication Analysis

Top Keywords

implantation capsule
8
capsule robot
8
implanting biosensor
8
sensor deployment
8
design
4
design validation
4
biosensor
4
validation biosensor
4
biosensor implantation
4
robot proposed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!