A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiscale Mechanical Evaluation of Human Supraspinatus Tendon Under Shear Loading After Glycosaminoglycan Reduction. | LitMetric

Multiscale Mechanical Evaluation of Human Supraspinatus Tendon Under Shear Loading After Glycosaminoglycan Reduction.

J Biomech Eng

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:

Published: July 2017

Proteoglycans (PGs) are broadly distributed within many soft tissues and, among other roles, often contribute to mechanical properties. Although PGs, consisting of a core protein and glycosaminoglycan (GAG) sidechains, were once hypothesized to regulate stress/strain transfer between collagen fibrils and help support load in tendon, several studies have reported no changes to tensile mechanics after GAG depletion. Since GAGs are known to help sustain nontensile loading in other tissues, we hypothesized that GAGs might help support shear loading in human supraspinatus tendon (SST), a commonly injured tendon which functions in a complex multiaxial loading environment. Therefore, the objective of this study was to determine whether GAGs contribute to the response of SST to shear, specifically in terms of multiscale mechanical properties and mechanisms of microscale matrix deformation. Results showed that chondroitinase ABC (ChABC) treatment digested GAGs in SST while not disrupting collagen fibers. Peak and equilibrium shear stresses decreased only slightly after ChABC treatment and were not significantly different from pretreatment values. Reduced stress ratios were computed and shown to be slightly greater after ChABC treatment compared to phosphate-buffered saline (PBS) incubation without enzyme, suggesting that these relatively small changes in stress values were not due strictly to tissue swelling. Microscale deformations were also not different after ChABC treatment. This study demonstrates that GAGs possibly play a minor role in contributing to the mechanical behavior of SST in shear, but are not a key tissue constituent to regulate shear mechanics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993773PMC
http://dx.doi.org/10.1115/1.4036602DOI Listing

Publication Analysis

Top Keywords

chabc treatment
16
multiscale mechanical
8
human supraspinatus
8
supraspinatus tendon
8
shear loading
8
mechanical properties
8
help support
8
gags help
8
sst shear
8
shear
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!