Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5 ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination.

Methods: Here we tested this hypothesis by analyzing a CD166 mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture.

Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5 ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1 ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166 Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin.

Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC-niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404029PMC
http://dx.doi.org/10.1016/j.jcmgh.2016.12.010DOI Listing

Publication Analysis

Top Keywords

cell adhesion
20
adhesion molecule
16
stem cell
12
cell homeostasis
12
cell
11
intestinal stem
8
homeostasis maintained
8
stem cells
8
active-cycling lgr5
8
lgr5 iscs
8

Similar Publications

Decoding Extracellular Protein Glycosylation in Human Health and Disease.

Annu Rev Anal Chem (Palo Alto Calif)

January 2025

Department of Chemistry, Yale University, New Haven, Connecticut, USA;

Protein glycosylation, the covalent attachment of carbohydrate, or glycan, structures onto the protein backbone, is one of the most complex and heterogeneous post-translational modifications (PTMs). Extracellular protein glycosylation, in particular N- and mucin-type O-glycosylation, plays pivotal roles in a number of biophysical and biochemical processes, such as protein folding and stability, cell adhesion, signaling, and protection. As such, aberrant glycosylation is implicated in a variety of diseases, including cancer.

View Article and Find Full Text PDF

Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!