A set of experiments was conducted to provide significant insights of micro-algal consortia regarding chromium adsorption. Four monocultures; , sp., sp., and sp., and their synthetic consortia were evaluated initially for chromium bio-adsorption at four different regimes of hexavalent chromium i.e. 0.5, 1.0, 3.0 and 5.0 ppm. Based on findings, only 1.0 and 5.0 ppm were considered for future experiments. Consequently, three different types of monoculture and consortia cells namely; live cells, heat-killed cells, and pre-treated cells were prepared to enhance their adsorption potential. Maximal adsorption of 112% was obtained at the dose of 1.0 ppm with 0.1% SDS pre-treated consortia cells over live consortia cells. In support, atomic absorption spectroscopy, laser induced breakdown spectroscopy, pulse amplitude modulated chlorophyll fluorescence, and scanning electron microscopy were performed to assess the structural and functional changes within consortia and their utilization in mitigation of elevated chromium levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391349 | PMC |
http://dx.doi.org/10.1007/s12298-017-0415-1 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.
View Article and Find Full Text PDFBiotechnol Appl Biochem
December 2024
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China.
Nucleic Acids Res
December 2024
Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.
View Article and Find Full Text PDFActivation of brown and beige fat biogenesis promotes metabolic health in rodents and humans, but typically requires cold exposure or pharmacological activation of β-adrenergic receptors, which may pose cardiovascular risks. Dietary intervention represents a clinically viable alternative strategy to induce beige cells and thus enhance metabolic health, though the underlying mechanisms remain poorly understood. In this study, we identified specific microbiota members in both mice and humans that promote browning of white adipose tissue (WAT) and ameliorate metabolic disorders in the context of a low-protein diet (LPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!