Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV). These neurotropic viruses spread to CNS tissues -axonally, where they induce a strong type 1 immune response that involves Th1, CD8, and B cell entry across the blood-brain barrier and virus clearance in the absence of overt sequelae. Intranasal infection with attenuated RABV prolonged the survival of mice bearing established GL261 brain tumors. Despite the failure of virus spread to the tumor, infection resulted in significantly enhanced tumor necrosis, extensive CD4 T cell accumulation, and high levels of the proinflammatory factors IFN-γ, TNF-α, and inducible NO synthase in the TME merely 4 d postinfection, before significant virus spread or the appearance of RABV-specific immune mechanisms in CNS tissues. Although the majority of infiltrating CD4 cells appeared functionally inactive, the proinflammatory changes in the TME later resulted in the loss of accumulating M2 and increased M1 TAMs. Mice deficient in the Th1 transcription factor T-bet did not gain any survival advantage from RABV infection, exhibiting only limited tumor necrosis and no change in TME cytokines or TAM phenotype and highlighting the importance of type 1 mechanisms in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467701PMC
http://dx.doi.org/10.4049/jimmunol.1601444DOI Listing

Publication Analysis

Top Keywords

cns tissues
12
type immune
8
immune mechanisms
8
infection attenuated
8
attenuated rabies
8
rabies virus
8
tumor microenvironment
8
gl261 brain
8
brain tumors
8
type mechanisms
8

Similar Publications

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.

View Article and Find Full Text PDF

Brain abscesses are invasive infections of the central nervous system with a high level of treatment complexity especially in pediatric patients. Here, we describe a 3-month-old infant with multiple brain abscesses caused by methicillin-susceptible (MSSA). The patient was initially treated with empirical antibiotics (ceftriaxone, metronidazole, vancomycin).

View Article and Find Full Text PDF

Somatic DNA Variants in Epilepsy Surgery Brain Samples from Patients with Lesional Epilepsy.

Int J Mol Sci

January 2025

Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Epilepsy affects 50 million people worldwide and is drug-resistant in approximately one-third of cases. Even when a structural lesion is identified as the epileptogenic focus, understanding the underlying genetic causes is crucial to guide both counseling and treatment decisions. Both somatic and germline DNA variants may contribute to the lesion itself and/or influence the severity of symptoms.

View Article and Find Full Text PDF

Glycosylation Pathways Targeted by Deregulated miRNAs in Autism Spectrum Disorder.

Int J Mol Sci

January 2025

Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.

Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!