The innate immune response is a central element of the initial defense against bacterial and viral pathogens. Macrophages are key innate immune cells that upon encountering pathogen-associated molecular patterns respond by producing cytokines, including IFN-β. In this study, we identify a novel role for RIPK1 and RIPK3, a pair of homologous serine/threonine kinases previously implicated in the regulation of necroptosis and pathologic tissue injury, in directing IFN-β production in macrophages. Using genetic and pharmacologic tools, we show that catalytic activity of RIPK1 directs IFN-β synthesis induced by LPS in mice. Additionally, we report that RIPK1 kinase-dependent IFN-β production may be elicited in an analogous fashion using LPS in bone marrow-derived macrophages upon inhibition of caspases. Notably, this regulation requires kinase activities of both RIPK1 and RIPK3, but not the necroptosis effector protein, MLKL. Mechanistically, we provide evidence that necrosome-like RIPK1 and RIPK3 aggregates facilitate canonical TRIF-dependent IFN-β production downstream of the LPS receptor TLR4. Intriguingly, we also show that RIPK1 and RIPK3 kinase-dependent synthesis of IFN-β is markedly induced by avirulent strains of Gram-negative bacteria, and , and less so by their wild-type counterparts. Overall, these observations identify unexpected roles for RIPK1 and RIPK3 kinases in the production of IFN-β during the host inflammatory responses to bacterial infection and suggest that the axis in which these kinases operate may represent a target for bacterial virulence factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471631 | PMC |
http://dx.doi.org/10.4049/jimmunol.1601717 | DOI Listing |
iScience
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.
Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
While cognitive impairment has been documented in ulcerative colitic patients, the possible influence of central β3-adrenergic receptor (β3-AR) signaling on this extraintestinal manifestation remains unclear. Previously, we identified an imperative role for mirabegron (MA) as an agonist of β3-AR, in decreasing the BACE-1/beta-amyloid (Aβ) cue in the colons of UC rats. Consequently, we investigated its therapeutic potential for alleviating cognitive impairment associated with UC.
View Article and Find Full Text PDFVet Microbiol
January 2025
Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
The purpose of this study was to investigate whether RIPK3-mediated programmed cell death can promote the replication and transmission of renal infectious bronchitis virus in renal tubular epithelial cells. Primary renal tubular epithelial cells were extracted from 1 to 7 day old Hy-Line Brown chicks, cultured in vitro by type I collagenase digestion, and infected with 1MOI SX9 strain. Cell samples were collected at 12 hpi, 24 hpi, 36 hpi and 48 hpi for experimental exploration.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Respir Investig
January 2025
Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China. Electronic address:
Background: The mechanism underlying necroptosis in pulmonary vessel endothelial cells (PVECs) resulting from long non-coding RNA (lncRNA)-induced alternative splicing (AS) of target genes in acute lung injury (ALI) remains unclear.
Methods: Lipopolysaccharide (LPS)-induced expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and lncRNAs was analyzed via RT-PCR in PVECs. Full-transcriptome sequencing was used to detect AS-related mRNAs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!