Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photonic crystals (PCs) have emerged as one of the most widely used platforms for controlling light-matter interaction in solid-state systems. They rely on Bragg scattering from wavelength-sized periodic modulation in the dielectric environment for manipulating the electromagnetic field. A complementary approach to manipulate light-matter interaction is offered by artificial media known as metamaterials that rely on the average response of deep-subwavelength unit cells. Here we demonstrate a class of artificial photonic media termed "photonic hypercrystals" (PHCs) that combine the large broadband photonic density of states provided by hyperbolic metamaterials with the light-scattering efficiency of PCs. Enhanced radiative rate (20×) and light outcoupling (100×) from PHCs embedded with quantum dots is observed. Such designer photonic media with complete control over the optical properties provide a platform for broadband control of light-matter interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441758 | PMC |
http://dx.doi.org/10.1073/pnas.1702683114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!