A chronic in situ coil system adapted for intracerebral stimulation during MRI in rats.

J Neurosci Methods

Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.

Published: June 2017

Background: We describe the fabrication and performance of a chronic in situ coil system designed to allow focal brain stimulation in rats while acquiring functional MRI data.

New Method: An implantable receive-only surface radiofrequency coil (iCoil) was designed to be fitted subcutaneously, directly onto to the rat skull surface during the intracerebral cannulation procedure. The coil is fixed in place using acrylic dental cement anchored to four screws threaded into the skull. To demonstrate the use of this coil system in situ, whole-brain functional MRI scans were acquired during various stimuli, including intracranial microinfusions of bicuculline and morphine in the prefrontal cortex and ventral tegmental area, respectively.

Results/comparison To Other Methods: SNR performance of the iCoil was superior to three commercially-available coils, in some instances by a factor of two. Widespread BOLD activation was observed in response to bicuculline and morphine microinfusions.

Conclusion: A new approach was demonstrated for high-SNR MR imaging of the brain in rats with intracranial implants using an implantable surface coil. This approach enables mapping the functional response to highly targeted stimuli such as intracranial microinfusions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2017.04.018DOI Listing

Publication Analysis

Top Keywords

coil system
12
chronic situ
8
situ coil
8
functional mri
8
intracranial microinfusions
8
bicuculline morphine
8
coil
6
system adapted
4
adapted intracerebral
4
intracerebral stimulation
4

Similar Publications

Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery.

Pharmaceutics

December 2024

Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.

The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system's functionality for organ retention and targeted drug release.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.

View Article and Find Full Text PDF

Assessing the impact of device parameters on electronic cigarette aerosol dynamics: Comprehensive analysis of emission profiles and toxic chemical constituents.

Sci Total Environ

January 2025

Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea. Electronic address:

The toxicity of electronic cigarette (EC) aerosol is influenced not only by the type of e-liquid but also by various operational parameters of the device used to vaporize it. In this study, we utilized a flask and heating mantle system, instead of a conventional EC device, to systematically evaluate the effects of EC device operational parameters, including vaporization temperature, airflow rate, and the materials of coils and wicks, on the generated mass of EC aerosol and the production of toxic carbonyl compounds. The results demonstrated that these parameters significantly impact aerosol mass and toxicant composition.

View Article and Find Full Text PDF

Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!