Background: Previous findings have demonstrated that lumbar radicular pain after disc herniation may be associated with up-regulation of inflammatory mediators. In the present study we examined the possible role of extracellular microRNAs (miRs) in this process.
Methods: Single unit recordings, isolation of exosome-like vesicles, electron microscopy, nanoparticle tracking analysis, western blot analysis and qPCR were used in rats to demonstrate the effect of nucleus pulposus (NP) applied onto the dorsal nerve roots. ELISA and qPCR were used to measure the level of circulating IL-6 and miRs in a 1-year observational study in patients after disc herniation.
Results: In the rats, enhanced spinal cord nociceptive responses were displayed after NP applied onto the dorsal nerve roots. An increased release of small non-coding RNAs, including miR-223, miR-760 and miR-145, from NP in exosome-like vesicles was demonstrated. In particular, the NP expression of miR-223, which inhibited the nociceptive spinal signalling, was increased. In the patients, increased extracellular miR-223 was also verified in the acute phase after disc herniation. The increased miR-223 expression was, however, only observed in those who recovered (sex, age and smoking were included as covariates).
Conclusions: Our findings suggest that miR-223, which can be released from the NP after disc herniation, attenuates the neuronal activity in the pain pathways. Dysregulation of miR-223 may predict chronic lumbar radicular pain. Trial registration/ethics REK 2014/1725.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412060 | PMC |
http://dx.doi.org/10.1186/s12967-017-1194-8 | DOI Listing |
World Neurosurg
January 2025
Department of Spine Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University.
Background: Lumbar disc herniation (LDH) is a common cause of back and leg pain. Diagnosis relies on clinical history, physical exam, and imaging, with magnetic resonance imaging (MRI) being an important reference standard. While artificial intelligence (AI) has been explored for MRI image recognition in LDH, existing methods often focus solely on disc herniation presence.
View Article and Find Full Text PDFEur Spine J
January 2025
Neurosurgery Department, Hospital Universitari Bellvitge, Barcelona, Spain.
J Int Med Res
January 2025
Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
An 18-year-old female patient presented with a 1-month history of low back pain, which had worsened and was accompanied by radiating pain in the right lower limb for half a month. She was admitted to our hospital with computed tomography and magnetic resonance imaging findings suggesting calcification of the L3/4 disc and a large intraspinal mass at the L2-4 level. The patient's symptoms did not improve with conservative treatment, and her muscle strength rapidly declined.
View Article and Find Full Text PDFJ Can Chiropr Assoc
December 2024
Division of Neurosurgery, Université de Montréal.
Objective: This case report discusses the diagnostic challenges associated with the early identification of cauda equina syndrome in a 25-year-old patient without lumbar spinal pain. It introduces a new classification scheme related to a more effective diagnosis.
Clinical Features: The patient experienced pain in the right hamstring, diagnosed as a pulled muscle.
JBJS Case Connect
October 2024
Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
Case: A 34-year-old man presented at our hospital with knee collapse. Magnetic resonance imaging (MRI) revealed posterior compression of the dural sac by a lumbar epidural lesion; however, a diagnosis could not be reached. Gadolinium (Gd)-enhanced 3-dimensional MRI (3D-MRI) clearly delineated the morphology, enabling us to make a preoperative diagnosis of posterior epidural migration of the lumbar disc fragment (PEMLDF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!