Purpose: The purpose of this substudy of a large randomized controlled trial was to evaluate the efficacy of the Mindfulness-Based Stress Reduction (Breast Cancer) (MBSR[BC]) program compared to usual care (UC) in normalizing blood levels of pro-inflammatory cytokines among breast cancer survivors (BCS).
Method: A total of 322 BCS were randomized to either a 6-week MBSR(BC) program or a UC. At baseline and 6 and 12 weeks, 10 ml of venous blood and demographic and clinical data were collected and/or updated. Plasma cytokines (interleukin [IL]-1β, IL-6, IL-10, tumor necrosis factor [TNF] α, transforming growth factor [TGF] β1, soluble tumor necrosis factor receptor [sTNFR] 1) were assayed. Linear mixed models were used to assess cytokine levels across three time points (baseline and 6 and 12 weeks) by group (MBSR[BC] vs. UC).
Results: Of the six measured cytokines, three were nondetectable at rates greater than 50% (IL-10, IL-1β, TGF-β1) and, because of overall low prevalence, were not analyzed further. For the remaining cytokines (TNFα, IL-6, sTNFR1), results showed that TNFα and IL-6 increased during the follow-up period (between 6 and 12 weeks) rather than during the MBSR(BC) training period (between baseline and 6 weeks), while sTNFR1 levels did not change significantly across the 12-week period.
Conclusions: Study results suggest that MBSR(BC) affects cytokine levels in BCS, mainly with increases in TNFα and IL-6. The data further suggest that B-cell modulation may be a part of immune recovery during breast cancer management and that increases in TNFα and IL-6 may be markers for MBSR(BC)-related recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942506 | PMC |
http://dx.doi.org/10.1177/1099800417707268 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!