It is a common experience-and well established experimentally-that music can engage us emotionally in a compelling manner. The mechanisms underlying these experiences are receiving increasing scrutiny. However, the extent to which other domains of aesthetic experience can similarly elicit strong emotions is unknown. Using psychophysiology, neuroimaging and behavioral responses, we show that recited poetry can act as a powerful stimulus for eliciting peak emotional responses, including chills and objectively measurable goosebumps that engage the primary reward circuitry. Importantly, while these responses to poetry are largely analogous to those found for music, their neural underpinnings show important differences, specifically with regard to the crucial role of the nucleus accumbens. We also go beyond replicating previous music-related studies by showing that peak aesthetic pleasure can co-occur with physiological markers of negative affect. Finally, the distribution of chills across the trajectory of poems provides insight into compositional principles of poetry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597896 | PMC |
http://dx.doi.org/10.1093/scan/nsx069 | DOI Listing |
Heliyon
January 2025
Department of Physics, University of Okara, Okara, 56300, Pakistan.
Sustainability and environmental protection are reshaping industries, including construction, where sustainability plays a crucial role in its influence on global resource consumption and waste management. The current study has developed a reusable cement material by photo-chemical surface modification of marble powder, achieved by reacting glycidyl methacrylate with carbonate functionality. This innovative modified marble powder boosts the reusability of construction materials, unlocking new possibilities for sustainable building practices.
View Article and Find Full Text PDFAdv Mater
January 2025
Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.
View Article and Find Full Text PDFSmall Methods
January 2025
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA.
Background: Clinical determination of patients at high risk of poor surgical outcomes is complex and may be supported by clinical tools to summarize the patient's own personalized electronic health record (EHR) history and vitals data through predictive risk models. Since prior models were not readily available for EHR-integration, our objective was to develop and validate a risk stratification tool, named the Assessment of Geriatric Emergency Surgery (AGES) score, predicting risk of 30-day major postoperative complications in geriatric patients under consideration for urgent and emergency surgery using pre-surgical existing electronic health record (EHR) data.
Methods: Patients 65-years and older undergoing urgent or emergency non-cardiac surgery within 21 hospitals 2017-2021 were used to develop the model (randomly split: 80% training, 20% test).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!