Aims: To investigate the possibility that vorticity assessed by four-dimensional flow cardiac magnetic resonance (4D-Flow CMR) in the left ventricle of patients with mild-to-moderate chronic obstructive pulmonary disease (COPD) is a potential marker of early LV diastolic dysfunction (LVDD) and more sensitive than standard echocardiography, and whether changes in vorticity are associated with quantitative computed tomography (CT) and clinical markers of COPD, and right ventricular (RV) echocardiographic markers indicative of ventricular interdependency.

Methods And Results: Sixteen COPD patients with presumptive LVDD and 10 controls underwent same-day 4D-Flow CMR and Doppler echocardiography to quantify early and late diastolic vorticity as well as standard evaluation for LVDD. Furthermore, all patients underwent detailed CT analysis for COPD markers including percent emphysema and air trapping. The 4D-Flow CMR derived diastolic vorticity measures were correlated with CT measures, standard clinical and CMR markers, and echocardiographic diastolic RV metrics. Early diastolic vorticity was significantly reduced in COPD patients (P < 0.0001) with normal left ventricular (LV) mass, geometry, systolic function, and no or mild signs of Doppler LVDD when compared with controls. Vorticity significantly differentiated COPD patients without echocardiographic signs of LVDD (n = 11) from controls (P < 0.0001), and from COPD patients with stage I LVDD (n = 5) (P < 0.0180). Vorticity markers significantly correlated with CT computed measures, CMR-derived RV ejection fraction, echocardiographic RV diastolic metrics, and 6-minute walk test.

Conclusion: 4D-Flow CMR derived diastolic vorticity is reduced in patients with mild-to-moderate COPD and no or mild signs of LVDD, implying early perturbations in the LV flow domain preceding more obvious mechanical changes (i.e. stiffening and dilation). Furthermore, reduced LV vorticity appears to be driven by COPD induced changes in lung tissue and parallel RV dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279084PMC
http://dx.doi.org/10.1093/ehjci/jex069DOI Listing

Publication Analysis

Top Keywords

4d-flow cmr
12
diastolic vorticity
12
cardiac magnetic
8
diastolic dysfunction
8
patients mild-to-moderate
8
mild-to-moderate chronic
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
early diastolic
8

Similar Publications

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Aims: To assess the reproducibility of 4D-Flow cardiac magnetic resonance (CMR) parameters in the descending thoracic aorta-DTAo-(regurgitant fraction [RF], end-diastolic reverse flow [EDRF], and holodiastolic flow reversal [HDR]), and the relationship with RF in the sinotubular junction (STJ), and the left ventricular end-diastolic volume index (LVEDVI) in patients with chronic aortic regurgitation (AR).

Methods And Results: A descriptive study of these variables was conducted. A receiver operating characteristic curve was used to determine the optimal cut-off point.

View Article and Find Full Text PDF

Impact of measurement location on direct mitral regurgitation quantification using 4D flow CMR.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address:

Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) shows promise for quantifying mitral regurgitation (MR) by allowing for direct regurgitant volume (RVol) measurement using a plane precisely placed at the MR jet. However, the ideal location of a measurement plane remains unclear. This study aims to systematically examine how varying measurement locations affect RVol quantification and determine the optimal location using the momentum conservation principle of a free jet.

View Article and Find Full Text PDF

4D flow cardiac magnetic resonance in pediatric congenital heart disease: Insights from over four years of clinical practice.

Clin Imaging

January 2025

Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.

Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!